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Preface

Multi~stage games have long been of great interest
to me. When, as an officer in the Egyptian Air Force, I
joined the Operations Research Center in Cairo, Egypt,

I was involved in computerization of the Air War Board
Game from Simulations Publication, Inc. (SPI). The ques-~
tion of what is the "optimal" strategies in playing those
games had no answer for me. While at AFIT I learned that
multi~stage game theory may be used to approximate the
optimal solution. Hence, I decided to develop a multi-
stage game algorithm. The algorithm developed in this
thesis finds the game value and one of the optimal
strategies for each stage of the game using both single
stage game theory and dynamic programming.

I wish to thank Lieutenant Colonel James Bexfield,
my faculty advisor, for his assistance and sound advice
throughout this effort. 1In addition, thanks are extended
to my reader, Lieutenant Colonel Charles McNichols, for
his time and encouragement; and to my typist, Phyllis
Reynolds, for her tireless efforts to produce a quality
product.

Finally, I wish to thank my wife, Sohair, whose
usually gentle prodding ensured the successful completion

of this research.
— Mohamed A. Fateen
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Abstract

The algorithm developed in this study finds the
solution to multi-stage simultaneous games. A dynamic
programming approach is used t§ solve the multi-stage game.
The main idea of the solution is to build at each stage a
matrix whose values are the payoffs obtained by playing
each of the given strategies at this stage and the optimal
strategies for the remaining stages. This payoff matrix
is then solved using a linear programming algorithm.

A tactical air war problem was selected to illus-
trate the usefulness of the algorithm. An interactive
GAME was developed for training and assisting the field
commander. Finally, it was shown how the multi-stage
algorithm can be used to compare two weapon systems by

letting each side play its optimal strategy.




A COMPUTERIZED ALGORITHM FOR SOLVING
MULTI-STAGE SIMULTANEOUS GAMES

I. Introduction

o The theory of games of strategy may be described
: : as a mathematical theory of decision-meking by par-
ticipants in a competitive environment. In a typical
problem to which the theory is applicable, each par-
ticipant can bring some influence to bear upon the
outcome of a certain event; no single participant by
himself nor chance alone can determine the outcome
completely. The theory is then concerned with the
problem of choosing an optimal course of action which
takes into account the possible actions of the par-
ticipants and the chance events [Ref 3:1].

Examples of games of strategy include poker, chess,

and military battles. Each of these games allows the
players to make use of their ingenuity in order to influ-
ence the outcome.

The problem we are dealing with is a particular
form of game theory--that for a multi-stage or an "N-stage

game." The name reflects the fact that there are a series

of N decision points, or stages, in the conduct of a tacti-
cal campaign. The proper allocation of forces at each
stage depends upon the cumulative outcome of the preceding
stages and the length of time left in the campaign. The
solution to a multi-stage game indicates the strategies

“f% each side should play so as to optimize their respective

3 { ' payoffs.

Others have attempted to solve multi-stage games.

We review three optimization models OPTSA (Ref 2),
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Lulejian model (Ref 10), and DYGAM (Ref 6:A-1 to A-12).
OPTSA's insistence on exact optimality causes long running
times and limits the number of stages in the game. Lulejian
models use successive sweep techniques to find an optimal
solution. DYGAM uses the dynamic programming approach to
get the upper and lower bounds and enforceable strategies,
corresponding closely to the minimax and maximin strate-
gies for the game at a stage (Refs 6; 16).

There are two research objectives:

1. Develop an algorithm and computer code to solve
the simultaneous multi-stage game. ' This algorithm will
incorporate the best features of the available existing
models, and use new concepts that either improve the effi-
ciency of the model or increase its realism.

2. Illustrate how game theory can be used in
national defense. This includes exploring the usefulness
of game theory as a training device (Chapter IX) and as an
aid to procurement decision making (Chapter X).

The algorithm developed is based on the concept of
dynamic programming (see Appendix B). In this sense its
basic structure parallels that of the DYGAM model. A more
detailed comparison is not possible since only very general
documentation was available for the DYGAM model.

The remainder of this thesis will pursue the objec-
tives previously outlined. The second chapter will present

a review of single~-stage game theory. This provides the




reader with a basic understanding of the terminology of
game theory and how linear programming can be used to solve
the single-stage game. The third chapter describes the
general multi-stage game problem. The fourth chapter is

a review of the literature for the three models mentioned
above. The fifth chapter contains the general algorithm.
The author selected the tactical air war problem to illus-
trate the usefulness of the algorithm. The sixth chapter
describes the tactical air war problem. Chapter VII
describes the linear model of the tactical air war together
with the solution algorithm 1.eeded to solve it. Chapter
VIII indicates how the algorithm developed in Chapter VII
was verified and validated. Chapter IX describes an appli-
cation of the linear model which may be useful in training
Air Force decision makers. Chapter X shows how the model
could potentially be used to give insight into an aircraft
procurement decision. Chapter XI describes a modification
to the linear model. Finally, Chapter XII provides conclu-

sions and recommendations for further research.

]
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I1I. Game Theory Overview

Introduction

This chapter is designed to give the reader who has
a general operations research background a basic understand-
ing of game theory. The terminology and concepts discussed
in this chapter will be used in the development of the
algorithm used to solve the multistage game. First we
define what we mean by a payoff, then we discuss what is
meant by strategies, and a two-person zero-sum game. Next
the concepts of an optimal solution for a two-person zero-
sum game is discussed. A graphical solution technique is
explained. Finally we show how the technique of linear

programming can be used to solve two-person zero-sum games.

Game Theory

Game theory (Ref 12:339-352) deals with decisions
under uncertainty involving two or more intelligent oppo-
nents in which each opponent aspires to optimize his own
decision but at the expense of the other opponents. Typical
examples include launching advertisement campaigns for com-
peting products and planning war tactics for opposing
armies.

In game theory, an opponent is referred to as a
player. Each player has a number of choices, finite or
infinite in number, called strategies. The outcomes or

4
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payoffs of a game depend on the strategies selected by each
of the players. A game with two players, where the gain of
one player equals the loss to the other, is known as a two-

- person zero-sum game. In such a game it suffices to express
the outcomes in terms of the payoff to one player. A matrix
is usually used to summarize the payoffs to the player whose
strategies are given by the rows of the matrix while the
columns represent the corresponding strategies for his
opponent.

Optimal Solution of Two-Person
Zero-Sum Games

E—

Games represent the ultimate case of lack of infor-

e

| mation in which intelligent opponents are working in a con-~

flicting environment (Ref 12:340). The result is that a

very conservative criterion is often proposed for solving
two-person zero-sum games. This is the minimax-maximin
{ criterion.

To accommodate the fact that each opponent is work-~
ing against the other's interest, the minimax criterion
selects strategies for each player which will result in the
best of the worst possible outcomes. Since the game matrix

is usually expressed in terms of the payoff to player A

':] (whose strategies are represented by the rows), the cri-
terion calls for A to select the strategy which maximizes
his minimum gain, the minimum being taken over all the

' strategies of player B. By the same reasoning, player B

- — 4__“




selects his strategy which minimizes his maximum losses.
The maximum is taken over all A's strategies.

As an example, consider a two-person zero-sum game
with each player able to select one of four options (strate-
gies) at each play of the game. The entries in the payoff

matrix, Table II-1, represent player A's gain.

TABLE II-1 1

TWO-PERSON ZERO-SUM EXAMPLE PAYOFF TABLE

PLAYER B
1 2 3 4 Row Minimum
1| 9 3 8 4 3
pLAvER 2| 6 4 7 10 (@ Maximin
| A 3| 8 3 5 -7 -7
4{ 2 3 8 6 2 j
Column Maximum: 9 8 10
Mini-
max !

When player A plays his first strategy, he may gain

; 9, 3, 8 or 4 depending on player B's selected strategy. He
! can guarantee, however, a gain of at least min{9,3,8,4}=3

i
regardless of B's selected strategy. Similarly,

- ' if A plays his second strategy, he guarantees a payoff of ;P

at least min{6,4,7,10}=4; if he plays his third strategy,
he guarantees a payoff of at least min{8,3,5,-7}=-7; and if
he plays his fourth strategy, he guarantees a payoff of at
least min{2,3,8,6}=2. Thus, the minimum values in each row
represents the minimum gain guaranteed A if he plays the

6
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pure strategy associated with that row. Now player A, by

selecting his second strategy, assures himself of a payoff ;
of at least 4. He is maximizing his minimum gain. Player
A's selection is called the maximin strategy, and his corres-
ponding gain is called the maximin (or lower) value of the
game.

Player B, on the other hand, wants to minimize his
losses. He realizes that, if he plays his first pure
strategy (first column) he can lose no more than
max{9,6,8,2}=9, regardless of A's selections. The corres-
ponding results are thus indicated in the above matrix by
"column maximum." Player B will then select the strategy

that minimizes his maximum loss. This is given by the

aning.

second strategy and his corresponding loss is given by
min{9,4,8,10}=4. Player B's selection is called the

minimax strategy and his corresponding loss is called the

minimax (or upper) value of the game.

From the conditions governing the minimax criterion, %
the minimax (upper) value is greater than or equal to the
maximin (lower) value. In the case where the equality
holds (i.e., minimax value = minimin value), the correspond-
ing pure strategies are called "optimal" strategies and the

game is said to have a saddle point. The value of the game

is equal to the common value of the maximin and minimax
values.
The fact that this game possesses a saddle point

(Ref 7:305) was crucial in determining how it should be

7
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played. If the game possesses a saddle point then neither
player can take advantage of the opponent's strategy to
improve his own position. 1In particular, when player A
predicts or learns that player B is using his second
strategy, player A would only decrease his gain if he were
to change from his original plan of using his second
strategy. Similarly, player B would only worsen his posi-
tion if he were to change his plan. These maximin and
minimax strategies are said to be stable strategies and an

optimal solution to the game has heen found.

Mixed Strategies

The above section shows that the existence of a
saddle point immediately yields the optimal pure strategies
for the game. However, some games do not have saddle points.
For example, consider the two-person zero-sum game in
Table II-2. The minimax value (8) is greater than the
maximin value (2). Hence the game does not have a saddle
point and the pure maximin-minimax strategies are not
optimal. Now knowledge of the opponent's strategy can be
used to improve a player's payoff. 1In this case the game
is said to be unstable.

The failure of the minimax-maximin (pure) strate-
gies, in general, to give an optimal solution to the game
has led to the idea of using mixed strategies (12:342).
Under this concept each player selects the strategy to play

at random according to a predetermined set of probabilities.
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TABLE I1I-2

PAYOFF TABLE WITHOUT SADDLE POINT

PLAYER B
. 1 2 3 4 Row Minimum
1 9 7 -3 8 -3
prayer 2| 8 9 5 4 @ Maximin
A 3/ 1 2 9 7 1
410 8 2 5 2
k. Column Maximum: 10 9 9
; Mini-
max
Let Xy rXgpee s Xy and Yyr¥greeer¥y be the row and column

probabilities by which A and B, respectively, select their

strategies. Note that the X and Yy selected must satisfy

n
i Z X, = 2 y- = l (2-1)

I N Ty
K vl it B i
P .
S U --

xi,yjio for all i and j.

Suppose player A has m pure strategies available to him and

player B may select any one of n strategies. Let a,

g i3
) 289

s represent the payoff to A if A selects strategy i and B
4 selects strategy j. Then Table II-3 contains the full

: 2 payoff matrix.
In general, the value of the above game must satisfy
the inequality

MAXIMIN (LOWER) VALUE < VALUE OF THE GAME
< MINIMAX (UPPER) VALUE

Sa e




TABLE II-3

GENERAL PAYOFF MATRIX

PLAYER B
1l 2 e n
1 all a12 .o a1n
2 a a cee a
PLAYER 21 22 2n
A . . . [ ]
n anl amz e amn

The actual solution of the mixed strategy problem is based
on the minimax criterion given before.. The only difference
is that A selects the_xl,xz,...,xm which maximize the small-
est expected payoff in a column, while B selects the

Y r¥greeee¥y which minimize the largest expected payoff

in a row. Mathematically, the minimax criterion for a mixed

strategy case is given as follows: player A selects the

xl,xz,...,xn that

m m m
V=max {min( 2 a.,X,, I @;nX.,eee Za., x.)} (2-2)
- i=1 il17i i=1 i2%i ! j=1 in7i

and player B selects the Yyr¥greeer¥p that

n n n
V=min {max( £ a,.yY., I @a,.¥Y.seeesr L a_.Y.)} (2-3)
j=1 1377 j=1 2373 j=1 mj= 3

These values are referred to as the maximum and the minimax

expected payoffs, respectively.

10
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As in the pure strategies case, the minimax expected
payoff is always greater than or equal to maximin expected
payoff (ng). When Xy oXgre oo X and Yyr¥peeer Yo correspond
to the optimal solution, the equality holds and the result-
ing expected payoffs become equal to the value of the game.
This result follows from the minimax theorem (Ref 12:343):
suppose xi,xs,...x; and yi;yg,...,y; are the optimal sets
of probabilities for both players. Then, the optimal
expected value of the game is

_ m n

V = V* = iil jilaijxiyg =V. (2-4)

There are several methods of solving two-person
zero-sum games for the optimal values of xl,xz,...,xn and
Yye¥oreees¥p. The next section presents the graphical
method for solving a game where one of the two sides has
exactly two strategies available to him (i.e., a (2xn) or
(mx2) game). A general linear programming method for
solving any mxn game is presented in the last section of

this chapter.

Graphical Solution of (2xn)

and (mx2) Games

Graphical solutions are only applicable to games
in which at least one of the players has exactly two
strategies. Consider the (2xn) game in Table II-4. Assume

that the game does not have a saddle point. Since A has

11




TABLE II-4

(2xn) TWO-PERSON ZERO-SUM GAME

PLAYER B
Yy Y2 e ¥n
PLAYER *1 | %11 212 e %1n
A =] -
X =l-x, as as, coe an
two strategies, it follows that x,=l-x,7 %,20, x,>0. His

expected payoffs corresponding to the pure strategies of

B are given in Table II-S.

TABLE II-5

A's EXPECTED PAYOFFS

B's Pure Strategy A's Expected Payoff
1 (a)17351) %3 %2y
2 (a)57257)%;%25,
n (ajp=ayp) % +ay,

Note that A's average payoff varies linearly with X -

According to the minimax criterion for mixed

strategy games, player A should select the value of 3

which maximizes his minimum expected payoffs. This may be

done by plotting the above straight lines as a function of
Xy A typical example is illustrated in Figure II-1. Each

line is numbered according to the corresponding pure
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Expected Payoff

Lower Envelope

Fig. II-l. Graphical Solution to
(2xn) Game (Player A)

strategy for B. The lower envelope of these lines (indi-
cated by heavy line segments) gives the minimum expected
payoff as a function of X, - The highest point on this
lower envelope (indicated by a dot) gives the maximin
expected payoff and hence the optimum value of xl(=xi).

The optimal yj for B can be obtained by observing

the definition of the expected value of the game. This

is given for the above (2xn) game by
* = * - * - %*
vt = yilla; -ay) )xjray, Hyslla; -a ) xj+a,,)
+ ... +y;{(aln-a2n)xi+a2n} (2-5)

] - *
All the lines (alj azj)xl+azj that do not pass
through the maximin point must have their corresponding

ygao. This follows since at xi any of these lines (for

13




example line 1 in Figure II-l) will yield an expected pay-
off for A greater than the maximin expected payoff, a
result which violates the minimax theorem.

Because the maximin point is determined by the
intersection of two straight lines, it follows that, except
for the yj corresponding to these two straight lines, all
other Yj may be taken equal to zero. 1If, however, there {
are more than two lines passing through the maximin point,
any two lines having opposite slopes may be selected to
determine the optimal values of yj. Each resulting solu-~
tion is an alternative solution. Consequently, any weighted
average of these solutions will also yield a new optimal

solution. {

The above discussion reveals that any (2xn) -game

is basically Juivalent to a (2x2) game. Let yjl and yj2
be the probabilities corresponding to the "active" strate-
gies of B. Let all other yi=0. Then B's expected payoffs

corresponding to A's pure strategies are given in Table

II-6.
TABLE II-6
B's EXPECTED PAYOFFS
A's Pure Strategy B's Expected Payoff
1 (23451721520 Y41%21 42
2 (3541722420 ¥41%2242

14




These two lines are then plotted as a function of yjl(see
Figure II-2). Since B wishes to minimize his maximum
expected payoff, the minimum point of the upper envelope

of these two lines identifies ygl.

A
Upper Envelope |

Expected Payoff

> Y.
0 jl

Fig. II-2. Graphical Solution to
(2xn) Game (Player B)

Solution of (mxn) Games
by Linear Programming

Game theory bears a strong relationship to linear
programming since every finite two-person zero-sum game can
be expressad as a linear program and, conversely, every
linear program can be represented as a game (12-346). This
section will explain how linear programming can be used to
find the solution to two-person zero-sum games. It is

especially useful for games with large payoff matrices.

15




Recall (equation 2-2) that A's optimum mixed strate-

gies satisfy

( m m m )
! max{min( Z a,,x., Z a..X., ..., L a, x.) (2-2)
i=1 i17i i=1 i271i i=1 in"i

subject to the constraints

+Xt. .. +X_=1
m

X17%2
xiio, i=l,2,...,m

Let

m m m
= i z -
v mln(iilailxl, i=lai2xi,..., i=lainxi) (2-6)
Then the problem becomes
maximize zy=v (2-7)

subject to

4 m
" [} Elaijxiiv, j=l,2,--.,n

xizo, for all i.

Note that v represents the value of the game.

i The above linear programming formulation can be
simplified by dividing all (n+l) constraints by v. This
' division is correct as long as v>0. If v<0, the direction

of the inequality constraints must be reversed. If v=0,

16
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the division is illegitimate. This point presents no spe-
cial problem since a positive constant Z can be added to
all the entries of the matrix, thus guaranteeing that the
' value of the game for the "modified" matrix will be greater
than zero. After the optimal solution is obtained, the
true value of the game is determined by subtracting 2.
Thus, assuming that v>0, the constraints of the

linear programming become

*1 ) xm
apy v tag v teeetag vzt
X
x X m
1 2 a — > 1
a — + a — 4+ ...+ M2 V —
12 v 22 v (2—8) F
X X X
1 2 m
q4n v Y vt et 3y 21
X X X
! —;+"3+ ] +_E=-1;
; v v v v
3 E Let xi=xi/v, i=1,2,...,m. Since
!
o max v = min L min{x,+x.+...+x_}
;5; the problem becomes
;:1
- ‘ minimize X, = X +X +...+x

suUbject to

5




allxl + a21x2 + ... + a

>
mlxm 21

a; X, +a,x, + ... +a.x >1

1271 2272 m27m
(2-9)

+ a + ... +a x >1

alnxl 2nxn mn m

Xy1Xpyee .xmgo.
Player B's problem is given by

n n n
min {max( £ a.,.y., I a,.Y. }
yj j=1 1373 j=1 23%3, «eey jilamjym)

(2-10)

subject to
Yityot .. +yn=l
yjzo, j=1,2,...,n

The linear programming formulation is:

Maximize Y0 = Yl + YZ + ... + Yn

subject to

Y. + a Y2 + ... al Y <1

a11*1 12 n'n

(2-11)

Y, + a ., ¥, + ... a

anY; 22¥2 2n¥n £

an¥y ta¥, +oa ¥ o<l

Yl,Yz,...Ynzo

18
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Y.
= 7}, j=1,2,...,n

where Yo = %, Yj

Notice that B's problem is actually the dual of
A's problem. Thus the optimal solution of one problem
automatically yields the optimal solution to the other.
Player B's problem can be solved by the regular simplex
method, while player A's problem is solved by the dual

simplex method.

19
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ITI. A Multi-Stage Simultaneous Game

In the preceding chapter we provided an overview
of a single-stage game theory. The players of a single-
stage game are only concerned with maximizing or mini-~
mizing the single-~stage game value. Although these single-
stage games can be played repetitively, each play is inde-
pendent of all previous plays. The multi-stage gaming
problem is more complex. The outcome of one play of the
multi-stage game may influence the resources each player
may use in a subsequent play. There are two types of
multi-stage games--sequential and simultaneous. 1In the
simultaneous game, both players redeploy during each stage
(neither side knows the other's deployment decision when
he makes his deployment decision); while in a sequential
game, one side deploys first and then the other side
redeploys with full knowledge of the other's decision.
Sequential games are not considered in this thesis. Next,
we formally define a multi-~stage simultaneous game.

A multi-stage simultaneous game consists of the
following:

1. Two players engage in a sequence of two-person,
zero-sum games. One game corresponds to a stage in the

sequence.

20




2. Both players have complete information about

all preceding stages. b
3. Both players redeploy during each stage. |
4. The payoffs on each stage are determined not

only by the strategies chosen by both players at this stage,

but also by the values of a set of resources or other

variables which serve to characterize the state of the

game at the beginning of the stage. A vector (xl,xz,...xN),
called the state variable, is often used to represent the
state of the game at the start of each stage.

5. The strategies chosen by the players together

with the current state determine the value of the state at
the beginning of the next stage. The state transition
function is used to determine the state vector for the next
stage from the state vector for the last stage and the
players' game strategies.

6. The total payoff for the game is the sum of the

incremental payoffs on each of the stages.

7. The objective of the game is to maximize (in
the case of the Blue player) or minimize (in the case of
the Red player) the total payoff for the game.

Figure III-1 shows the two-stage game. The result

of the first stage depends on the resources available to

both sides and the strategies they choose. The first
stage game will result in a certain payoff for Blue (which

is the negative of the Red payoff--recall the zero-sum

21
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concept) and the remaining resources available to both
sides. The second game payoff depends on the resources
remaining from the previous play (recall we assume no

replenishment) and the strategies both players use.

23
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IV. Literature Survey

b In this chapter we survey three multi-stage

J optimization models. These are the OPTSA (Ref 2), Lulejian
(Ref 10), and DYGAM (Ref 6:A-l1 toA-12) models. These
models deal with two-person, zero-sum simultaneous multi-
stage games. OPTSA obtains the exact optimal solution but

at the expense of long computer times and a limited number

MRS Sany o
.

of stages (three stages). Lulejian has a weakness in the
optimization methodology and allows a limited number of

decision vectors (Ref 6:11). DYGAM uses the technique of

By Ao e et
a

dynamic programming.

In addition, the author learned a great deal from

the book Games of Strategy by Melvin Dresher (Ref 3).

A discussion of a solution developed by Dresher of a multi-

stage tactical air war game will be reviewed in Chapter VI.

The Lulejian Model

The Lulejian model was developed for the Weapon
Systems Evaluation Group (WSEG) by Lulejian and Associates, !
Inc. in 1973 (Ref 10).
The model employs an algorithm that finds the
appropriate game value and approximate optimal strategies
for both players for each stage of the game (i.e.,

campaign). The basic approach is to decompose the problem 1

24
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into the solution of many one-move games. The discussion
of the algorithm appearing below was obtained from Refer-
ence 10.

The vector x==(xl,...,xn3_will denote the state of
the game where m is the number of state variables. . . .
Let A and B be the sets of strategies available to
players 1 and 2, respectively, on each move. . . . The
incremental payoff function, the terminal payoff func-
tion, and the transition function will be called g, h,
and t, respectively. Thus, if the current state is x,
and the strategies chosen by the players are a and b,
then the incremental payoff for the move is g(x,a,b)
and the state x' at the beginning of the next move will
be x'=t(x,a,b). Finally, let VN(x) denote the game
value of an N-move game which is started at the initial
state x and played with optimal strategies by both
players.

An analytic solution of an N-move game is a function,
VN’ giving the game value as a function of the initial
state. Such solutions are rare because of formidable
mathematical difficulties. For games which possess an
analytic solution the procedure is as follows:

First, the one-move game is solved:

min max

Then using the one-move solution, the two-move game
is solved:

min max

VZ(X) = beB acA

[g(x:a:b) +Vl(t(xoa:b) )]

This recursive procedure is continued, one move at a
time, until finally Vh is reached

min max
=
beB acA

VN(x)

[g(x:apb) + VN-l(t(x'a'b) )]

25
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. + . the . . . games typically do not possess
saddle points. Thus, pure strategy solutions to the
above minimax problem do not exist. Rather than going
to mixed strategy solutions, the Lulejian model circum-
vents this difficulty by computing the game value for
one player or the other announcing his strategy choice
first. These values provide upper and lower bounds
for the simultaneous move (mixed strategy) game value.

Let Vk(l)(x) be the game value for player 1 (the
maximizer) announcing his strategy first. Then

(1) _ max {min
Vi (x) = acA [bEB [Pk(x,a,b)]] ’

where
Pk(x,a,b)==g(x,a,b)-+Vk_1(t(x,a,b)).

That is, player 1 will announce that strategy which

will maximize the minimum payoff he will receive regard-
less of player 2's subsequent strategy choice. Simi-
larly,leth(z)(x) be the game value for player 2 (the
minimizer) announcing his strategy first. Then

(2) _min |max
Vk (x) = peB [aEA [Pk(xralb) ]]

It can be shown that for any x

Furthermore, if Vk(x) is the simultaneous move game
value, then

vk(l) (x) <V, (x) _<_vk(2) (x)

Suppose player 2 announces his strategy first.
Then, the algorithm employed in the prototype model
proceeds as follows. In the expression

(2) (1) —min [max

beB laea [g(x’a'b)'*Vk-l(z)(t(x,a,b))ﬂ

Yk
the function Vk-l(z)' which represents the value of the

remaining moves in the game, is approximated by playing

26




the game through to the end using étrategies which
have been previously optimized. The procedure is as
follows:

l. Estimate good strategies for both players for

the game. Let (aN,b )s..., (a;,by) be the estimate.
N & ()
2. Find the state path x s o0esX determined
by these strategies and the initial state x(N).

[The initial state is given; x(l)

of the beginning of the stage.]
3. PFind the total payoff PN'

4, Optimize the strategies (a,,b,) on the last move,
(2) (1), 1
1 (x ).

represents the state

i.e., calculate V Let the new strategies
be (ai,bi).

5. Optimize the next to last move strategies
(az,bz) by assuming the value of the last move is
approximately equal to the incremental payoff when the
optimized strategies (ai,bi) are used. (The assumption
is that the relative value of various next to the last
move strategies can be seen by playing the last move
with an optimized but fixed last move strategy.)

Let the new strategy be (aé,aé).

6. Having found the optimized strategies
(ai-l’bﬁ-l)ié;"(ai'bi)’ optimize (ak,bk) by approxi-
mating Vk-l by the payoff obtained by playing the
remaining k-1 moves using the previously optimized
strategies. Repeat until k=N.

7. Compare the new strategies ((a&,b&),
(ag_jsPyg~p)r---(aj,bJ)) with the old strategies. If
they are identical, then the algorithm has converged.
The game value is approximately Pﬁ and the strategies
found in (6) are approximately optimal strategies for
the two players. If the strategies do not agree, go to
step (2) and repeat the process until convergence is

obtained.
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The sequence in which the strategies are optimized
from the last move (k=1) to the first move (k=N) is

actually quite arbitrary. The reverse sequence may
just as well be used or, better, the two sequences in

alternation.

OPTSA
The OPTimal Sortie Allocation model, OPTSA 1I,

was developed by IDA for computing the percentage of assign-
ments of general-purpose aircraft to missions by period,

for up to three periods. It is the only technique that pro-

vides an exact solution but it is very time-consuming
(Ref 2). The description below for the game solution pro-

cedure was obtained from Reference 2.

Let u(iB, iR’ jB' jR' kB' kR) denote the outcome
of the game in the selected measure of effectiveness
if Blue chooses action iB’ jB' kB on moves 1,2,3, and
Red chooses action iR' jR, kR on moves 1,2,3 where
= l,...,IB; jB=l,...,JB; kB=l,...,KB and iR =
=l,...,JR and kR=l,...,KR.

iB
l,...IR; jR

Let v(iB, iR' jB' jR) denote the expected value of
the selected measure of effectiveness if Blue chooses
action iB' jB on moves 1,2, and Red chooses action
iR,jR on moves 1,2 and then both play optimally on
move 3.

Let w(iB, iR) denote the expected value of the
selected measure of effectiveness if Blue chooses
action iB on move 1 and Red chooses action iR on move 1
and then both play optimally on moves 2 and 3.

Let V denote the expected value of the game with

qptimal plays by both Red and Blue on all three moves.
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The value v(iB, })is the expected value of

ipr Jgs Jp
a mixed strategy on the third move. The probabilities

can be denoted by )
p7(ig igs Jps Jps Kp)s all ié"iR' Jgs Jrr kg
a (g, ip, dgs dge kgl all dg, g, dgs 3gs kg
The value w(iB, iR) is the expected value of a mixed

strategy on the second move. The probabilities can
be denoted by

2,. . . . . .
p (1BI lRl JB)' all lBl lRl ]B

2,. . . . . .
q (.‘LB, igs JR), all 13, igs Ige

The value V is the expected value of a mixed
strategy on the first move. The probabilities can be
denoted by

pl(igi, all i

1l,. .
q (:LR), all ip-

For each combination of values iB' iR' jB' jR'
the value of the outcome ulip, ig, Jg, g+ kg, kg) is ' h
B and kR=l,...,KR. Then the

game consisting of these values is solved to obtain a

computed for kB =1,...,K

value v(iB, ) and associated optimal third

iRl JBI JR
move mixed strategies p (iB, iR' jB’ jR’ kB),
3,. . . .

kB=1,...,KB and g (1B, ipe Jgr g kR), kR=1""'KR‘
For each iB' iR the game consisting of values
v(iB, iR' jB’ jR) is solved to obtain a value w(iB, iR)
and an associated optimal second-move mixed strategies
2,. . . . 2,. . .
P “‘B' ips jB), jg = l,...,JB and p (lB’ ip, jR),
=1,... ,JR.

Finally the game consisting of values w(iB, iR)

IR

is solved to obtain V and associated optimal first-move

s bt

29
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. 1,. . 1 .
mixed strategy p (lB), 1B==l,...,IB and p (1R),
iR=l""’IR'

If the game is three-move, six-action there are
at the first computation stage above 1296 6 x 6 games
with resulting values v(iB, iR’ jB' jR) iB==l,...,6,
jB=l,...,6, jR=l,...,6. At the second

computation stage there are 36 6 x6 games with result-

iR=1”."6'

ing values w(iB, iR)iB=l,...,6, iR=1,...,6. At the
third computation stage there is one 6x6 game with
resulting value V.

For each of the 1296 games there is a mixed
strategy for Blue and Red, consisting of six probabili-
ties. For each of the 36 games there is 5. mixed strategy.
For the one game there is a mixed strategy. Thus there
are 1296 +36 +1 =1333 games, each with a value and a
mixed strategy for Blue and Red.

For input to each of the 1296 games there must be
computed 36 evaluations of . . . [outcomes]. Therefore
46,656 evaluations . . . are necessary.

If there were 10 actions at each move, there would
be 100 states after move 1, 100x100=10,000 states
after move 2, and 10,000x100=1,000,000 states after
move 3. Thus roughly 22 times as much computation is
required to obtain the outcomes. The number of games
is 10,000+100+1=10,101, or roughly 8 times as many
games to solve (10x 10 games rather than 6 x 6 games).

As an example, consider a 2x 2 game with the
payoff matrix for the Blue force shown in Table IV-1l.
b represents the amount of a resource available to blue
at the start of the stage. The state transition function
describing how the strategies affect the amount of b avail-

able at the next stage is contained in Table 1IV-2.
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TABLE IV-1

PAYOFF MATRIX

RED
1 1 2
1 | 5(b) 3(b)
BLUE
2 | 2(b) 4 (b)

TABLE IV-2

2x2 STATE TRANSITION MATRIX

RED
1 2
1 | .4(b) .2(b)
BLUE
2 | .5(b) .3(b)

Supposé the game begins with b=1. Thus, if both sides

N play strategy 1 on their first play, then blue receives a
payoff of 5 and the value of b entering the next stage is 3
.4. If again both sides select strategy 1, then blue
receives an additional payoff 5(.4) or 2 for a total payoff
to date of 5+2 or 7. The value of b entering the last |
4; (third) stage is (.4)(.4) or .16. If both sides again ;
_Iﬁ select strategy 1, then blue receives an additional payoff |

( of .16(5) or .8. The game is over and the total payoff

achieved by blue is 7.8.
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Step 1. To solve this game using OPTSA we first
create a table containing the total payoff values for all
64 different strategy options. A partial listing of this

Table is given as Table IV-3.

TABLE IV-3

TOTAL GAME PAYOFF VALUES FOR DIFFERENT STRATEGY
SELECTIONS IN 2x2 GAME

First Stage Second Stage Third Stage Total
iB iR } jB jR kB kR Payoff
1l 1 1 1 1 1 7.8
1 1 1l 1 1 2 7.48
1 1 1 1 2 1 7.32
1 1 1 1 2 2 7.64
1 1 1 2 1 1 6.6
1 1 1 2 1 2 6.44
1 1 1 2 2 1 6.36
1 1 iy 2 2 2 6.52
2 2 2 2 2 2 5.56

Step 2. Second, a table containing the values of
V(lB, ipe Jgv JR) is created. Recall that V(iB, ige 3g¢ jR)
is the expected payoff if Blue chooses iB' jB on moves 1,2

and Red chooses i on moves 1,2 and then both play

R’ jR
optimally on move 3. There will be 16 entries in this
table. Each one is found by solving a 2x2 game. For

example, to obtain V(1,1,1,1) we solve the 2x2 game (shown
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in Table IV-4) where the individual payoffs are obtained

from Table IV-3.

TABLE IV-4

« Ke 1 2
B . —
1 778 7,48
2 7.32 7.64 i

The total payoff for this game is 7.56 (solution technique
discussed in Chapter II). A partial listing of the table

for V(iB, ) appears in Table IV-5.

ips Jpr I
TABLE IV-5

VALUES OF V{(iy, ip, jp, jg) FOR 2x2 GAME

L First Stage Second Stage
1 1 1 1 7.56
1 1 1 2 6.48
1 1 2 1 6.50
1 1 2 2 7.02
1 2 1 1 5.28
2 2 2 2 5.51
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Step 3. Third, a table is constructed containing
the values of W(iB, iR), the expected total payoff when
Blue chooses iB and Red chooses iR on move 1 and then both
play optimally on moves 2 and 3. To find W(1,1) we must
solve the following game (Table IV-6), with individual

payoffs obtained from Table IV-5.

TABLE IV-6

2x2 GAME FOR W(l,1)

3

Jg R 1 2
1 756 .48
2 6.50 7.02

The game value and hence W(l,l) is 6.845. Table 1IV-7

summarizes the results.

TABLE IV-7

W(lB, lR) FOR 2x2 GAME i

First Stage !

]

i! i ip W(ig, ip) }
| 1 1 6.845 f
s 1 2 3.922 |
2 2 5.383 |

;
if
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Step 4. Finally we obtain the optimal expected
payoff for the game by solving the following game (Table

IV-8) with payoff entries obtained from Table IV-7.

TABLE IV-8

2x2 GAME FOR OPTIMAL SOLUTION

R
iR 1 2
1 6.845 3.922
2 4.306 5.383

The optimal game value is 4.990. The correspond-

ing (perhaps mixed) strategies can be found by considering

the individual game solutions that contributed to the final
payoff. Note that 16+4+1 or 21 (2x2) games were solved

in the OPSTA solution procedure.

DYGAM
DYGAM (DY¥namic GAMes solver) was developed at

Control Analysis Corporation to solve general multi-stage

games. The game solution procedure is as follows

(Ref 6). ;

Let W=(Wi) represent a N-dimensional vector of
state variables which completely characterizes the

status of the game at the beginning of any step. Assume
(T+1)(W)

that there exists a known payoff function p
which gives the reward to the Blue side if the game
ends (at the end of the Tth

stage) in state W. Also

35
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(T+l)(w)'

assume that the payoff to the Red side is -p
so that the game is zero-sum. Define p(l)(W) to be
the optimal payoff (if both sides make their best moves)
to Blue if the initial state is equal to W at the end
of the game. Thus, -p(l)(W) will be the optimal payoff
to Red. The problem is to compute p(l)(w) for any
initial deployment, W, and in this way evaluate alterna-
tive initial deployments.
Rather than directly computing the optimal payoff
p(lkw), the dynamic programming approach first com-
putes the intermediate payoffs p(t)(W), for t=T, T-1,
T-2, etc. Here, p(t)(w) has the interpretation of
being the optimal payoff to Blue :gen starting from P
2

state W at the beginning of the t period. The method

begins by determining the best strategies during the

last or Tth stage. For example, suppose that the state

of the game was W at the beginning of the Tth stage.
Then only a one-~stage problem need be solved to deter-
mine the value p(T)(W) of the game. If a simultane-
ous game is being played (both sides redeploy during %
each stage), then a single stage game must be solved,

perhaps by linear programming. . . . Unfortunately,
it will be necessary in general to determine or esti-

mate p(T)(W) for all possible states W. The next step

is to determine the strategies during the second to |
last stage (stage T-1l). Again, only a one-stage problem
need be solved to determine the value p(T'l)(W); here,

p(T)(-) is used to compute the relative value of states

at the beginning of the Tth

period. This process is
repeated until the first stage is reached, where the
function p(t)(') is computed from the function p(t+1)(~)

for t=1,...,T by solving a single stage optimization

problem (a single stage game for simultaneous games.
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. « . Note that the optimization proceeds backwards

in time, starting from p{T*1) (.) and ending with
p{ (),

In dynamic programming it is generally necessary
to determine (or estimate) p(t)(W), t=1,...,T, for all
possible states W. Rather than determining these pay-
off functions exactly, the approach taken is to use a
polynomial with sufficient degree to represent this
function. According to the Polynomial Approximation

Theorem, there exists a polynomial function which can
approximate any continuous function over a compact

set within any specified accuracy. Basically, there
are two approaches for fitting a polynomial to a func-
tion. One is to use a single polynomial with high
degree to approximate the payoff function over the
entire state space. . . . The second method is to sub-
divide the original space into smaller regions and then
use a separate polynomial of lower order to approximate
the payoff function over each region; this latter
approach is called subregional approximation and is
used by DYGAM.
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V. The Algorithm

Introduction

The purpose of this chapter is to carefully
develop a general algorithm which can be used to solve
multi-stage two-person zero-sum sumultaneous games. The
basic approach to solve the game is to decompose the
multi-stage game into the solution of many one-stage games.
The main idea is to build at each stage a matrix whose
values are the payoffs obtained by playing each of the
given strategies at this stage and the optimal strategies
for the remaining stages. A dynamic programming (back-
ward approach) is used to determine the payoff obtained

by using the optimal strategies for the remaining stages.

The Algorithm

In order to facilitate the discussion of the solu-
tion technique, some notation will be necessary.

Let B and R be the number of strategies available
to the Blue and Red players, respectively, at each stage.
It is convenient to count stages from the end of the
campaign to the beginning. Thus ISTAG=1 will represent
the last stage, the final battle and ISTAG =MSTAGE will
represent the beginning of the battle, where MSTAGE is the

total number of stages.
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(ISTAG) _ (xl'xz""'xN) will denote ;

The vector 1

one possible state of the game at stage ISTAG where N is

the number of state variables. For example, if the state

of the game at a stage is characterized by the ratio of

forces (x;), then N=1 and 1 (ISTAG)

= (xl).

Assume that there exist known payoff matrices with
elements TT(fISTAG),J,K) and -TT(IaSTAG),J,K) which gives
the reward (payoff) to the Blue side and the Red side,
respectively, if Blue played his Jth strategy and Red
played his Kth strategy at the stage ISTAG with entering
state vector IISTAG. Assume too that there exist a known

state transition function

(ISTAG)

I(ISTAG-l)

= F(I IJIK)

(ISTAG-1)

which gives the value of the state vector I at the

beginning of the previous stage from the state vector for

this stage and the players' strategies at this stage.
Define Y(I(ISTAG)) to be the optimal payoff to

Blue if both sides make their best moves from ISTAG until !

the final battle when the state vector equals pISTAG ¢

ISTAG. The problem is to compute Y(I(MSTAGE)) for any

initial state, I(MSTAGE)

, and total number of stages
MSTAGE. For example, consider a five-stage game with an
initial Blue force of BLUF =150 and Red force of

REDF =100. Again assume a state vector consisting of a

single variable, namely the force ratio. Then it is
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required to compute Y(I(S) , where I(s) = (xl) =150/100=1.5.
Rather than directly computing the optimal payoff
Y(I(MSTAGE)), the dynamic programming approach first com-

putes the intermediate payoffs Y(I(ISTAG)) for ISTAG =

l, 2, ... MSTAGE ~1 and for each I(ISTAG) . The method

begins by determining the optimal strategies during stage 1

for all possible values of the state variable I(ISTAG)

(Figure V-1). For example, suppose that the game was at

(1)

state I at the beginning of stage 1. Then only the

one-stage problem with payoff matrix TT(I(15 containing

(1)

elements TT(I ,J,K), J=1,...B,K=1,...R, need be

(.

solved to determine the value Y (I For the simultane-
ous game (both sides redeploy during each stage) a single-
stage problem can be solved by linear programming (see
Chapter II). The game value of this matrix will be Y(I(l)).
As mentioned earlier, in theory it will be necessary to

(1)

determine Y(I(l)) for all possible states I (e.g., for

all possible force ratios that could enter the final state).

e 1M

is very large, then this can be a very time-
consuming task. Later in this chapter an approximation
technique is discussed which lessens this computational
burden.

The algorithm progresses through the following
steps (Figure V-2):
1. For each possible state vector 1(2) at the

beginning of the second stage and strategy pairs J and K

40
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for Blue and Red, respectively, use the state transition

function to calculate the values in the entering state

(1)

vector I for the first stage.

2. The optimal game value Y(I(l)) for the state

vector entering the first stage has already been computed.

This value is added to the payoff value, TT(I(Z)

(2)

+J,K) for
the second stage. This sum (A(I ,J,K)) is the payoff to
Blue if Blue uses strategy J, Red uses strategy K at the
next to last stage (ISTAG =2) and then both use their
otpimal strategies at the last stage (ISTAG=1).

3. Let A(l(z)) be the payoff matrix obtained when

the state vector is I(z)

at ISTAG =2, then this one-stage
game can be solved to provide the optimal solution for the
two-stage game. The solution to the two-stage game is
denoted by YkI(z)).

4. Repeat until ISTAG = MSTAG.

In dynamic programming, it is generally necessary

(ISTAG))

to determine Y (I IsTAG=1l, 2, ..., MSTAGE, for

all possible states IISTAG. Rather than determining the
game values for all possible states, the approach taken is
to use a suitable number of grid points selected at a suit-
able distance over the output state space of any stage.

For example, if the possible force ratios are between .1l
and 10, the grid points can be selected so the values of

(ISTAG)

the state vector I considered are {.1, .2, .4,

.7, 1, 1.5, 2, 4, 6, 8, 10}. A cubic spline interpolation
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(Appendix A) is then used to estimate the payoffs for
force ratios between the selected grid points.

£

k|

-4

oy :i’




VI. Tactical Air Application

Introduction

The remainder of this thesis will be concerned
with the application of the methodology developed in
Chapter V to tactical air warfare problems. This chapter
contains a discussion of the missions in tactical air war-
fare and indicates the major assumptions necessary to
formulate the problem as a multi-stage two-person zero-

sum game.

The Problem

The problem of optimal employment of a tactical
air force in various theater air missions can be analyzed
as a multi-stage game between two sides. Tactical air
forces may be used on many missions, such as the follow-
ing:

Air Base Attack. These operations are against

the enemy's theater air base complex and organization
with the purpose of destroying his aircraft, personnel,
facilities, and so on.

Air Defense. These represent air-defense opera-

tions against the enemy's air base attack operations.

Close Air Support. The targets for close air

support operations are concentrations of enemy troops or

SN
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fortified positions close to the FEBA. They are attacked
in order to help the ground forces in the battle area.

Interdiction. These operations reduce the enemy's

military potential by attacking his transportation facili-
ties.

Reconnaissance. The most important function of

these operations is to obtain information about enemy
targets.

By setting three categories--attack, defense, and
support--it is apparent that each of the five tasks just
mentioned can be placed into one or more of these three
categories (Ref 11:233). For example, counter air would
go into the attack category. Air defense would be placed
under defense, and close air support under the support
category. Both reconnaissance and interdiction could
go into the categories of attack and support. Thus the
problem of tactical air war becomes the problem of employ-
ing the tactical air force in the three missions of attack,

defense, and support for each stage of the war.

Assumptions

Since the ultimate objective is to win the ground
battle, we will assume each player's objective for the game
is to maximize the difference between his close air sup-
port and his opponent's close air support for the entire

campaign. The players make allocation decisions between
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airborne attack, air defense and close air support each

day; these determine the outcome of the day's encounter.
The decision is not easy. Large allocations to air base
attack early in the campaign may result in substantially !
degrading the enemy's ability to conduct close air support

later in the campaign. The next day a new game is played.

The sequential total game for the entire campaign is
referred to as N-stage game, where N is the number of time
periods (days) represented in the campaign.

Additional assumptions of the model include:

1. 1Initial friendly and enemy force size and char-
ﬁcteristics are fixed and the campaign progresses to comple-
tion without force replenishment by either side.

2. The campaign consists of "simultaneous" stages.

Redeployment of aircraft is made by both sides at each

stage. Each side knows both his strength and the strength
of the opposing force. However, neither side knows the
other's deployment.
3. Aircraft are assumed to be homogeneous and of
multiple capability. Thus any available aircraft may be
assigned to a counter air mission, air defense mission
or close air support mission.
4. Attacks on air bases are limited to destruc- {

tion of aircraft caught on the ground. No benefit is

assumed to occur from these attacks on the installation,

POL, personnel, etc. 1Initially it is assumed all of the
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opposing player's aircraft are on the ground at the time
of attack.

5. Aircraft engaging in close air support cannot
be destroyed when accomplishing their missions. Thus
there is no attrition due to ground forces (AAA, SAMS)
or air defenses at the battle field.

6. Air defense aircraft are assumed to cause a
portion of the attacking force to jettison ordnance and
return to base. Initially it is assumed that the air
defense aircraft do not destroy the enemy attackers.

Later, in the binomial model, this assumption is relaxed.

Summary

In this chapter the tactical air war tasks were
compressed into three missions--attack, defense and close
air support. 1In addition, it was shown how the tactical
air war game could be formulated as a multi-stage, two-
person zero-sum simultaneous game. In the next chapter
a linear model is developed to solve the game. For the
linear model, all aircraft attrition is the result of an
air base attack on the other side. 1In Chapter IX a

binomial model is developed which allows for both air-to-

air attrition and ground attrition.




VII. Formulation and Solution of

the Linear Model

i Introduction

In this chapter we assume that aircraft attrition
3 can only occur due to aircraft assigned to the air base
attack mission destroying aircraft at the air base. Each
é' aircraft attacking the base is assumed to destroy a fixed ?
number of aircraft on the ground. Each aircraft assigned
to air defense causes a fixed number of air base attackers
;‘ to abort their mission and return to their home base.
| Thus the number of air base attack aircraft that abort
their mission is a 1inéar function of the number of air

defense aircraft. Hence the name linear model.

The first section of this chapter provides a

detailed formulation of the linear model. The next section

provides the linear model solution. This section is
divided into subsections dealing with the problem of an
infinite number of stages, then one stage equations for
the linear model, and the dynamic programming approach

used to solve the problem. Finally, a technique that

allows the algorithm to obtain an approximate solution

when the state variable is continuous is discussed.
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Formulation of the Linear Model

The linear model requires each player to allocate
all available aircraft to each of the three missions--
air base attack, air defense, and close air support--for
each stage of the game. Let BLUF(ISTAG) be the number of
Blue aircraft at the beginning of stage ISTAG, and
REDF(ISTAG) be the number of Red aircraft at the beginning

of ISTAG stage. These are the state variables in the model.

(ISTAG)

The decision variables are: ABAB is the number of

Blue aircraft sent on air base attack during stage ISTAG;

ADB(ISTAG) is the number of Blue aircraft sent on air

(ISTAG)

defense operations; ABAR is the number of Red air-

(ISTAG)

craft sent on air base attacks; and ADR is the

number of Red aircraft sent on air defense operations.

The remaining number of Blue aircraft,

(ISTAG) (ISTAG) (ISTAG)__ADB(ISTAG)

CASB = BLUF - ABAB
(7-1)

is the number sent on close air support operations; and the

remaining number of Red planes,

(ISTAG) (ISTAG) (ISTAG)._ADR(ISTAG)

CASR = REDF - ABAR

(7-2)
is the number sent in close air support operations by

Red. This is a simultaneous game, as both Red and Blue
allocate their available aircraft to the various missions

during every stage of the campaign.
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Assume that each Red defender is able to engage
on the average with RAD Blue attackers and force them to
jettison their load and abort the mission. So the number
of Blue aircraft which can complete the air base attack

mission will be the

(ISTAG)

max (0, ABAB

Assume that the fraction of Red aircraft not caught on
the ground is FRNC, and that each Blue attacker can
destroy on the average BABA Red aircraft caught on the

ground. Then the inventory of Red aircraft at the begin-

ning of the next stage isl

(ISTAG-1) (ISTAG) (ISTAG)

REDF = max [REDF X FRNC, REDF

(ISTAG) (ISTAG)

- BABA x max (0,ABAB - RAD x ADR 1:

(7-3)
and the inventory of Blue aircraft at the beginning of the

stage ISTAG-1 is

i
- | ol
;] LuF (ISTAG1) oy (prur (ISTAG) 4 paye, BLup (ISTAG)
%
- RABA x max (0,ABAR ISTAG) _ pap y app (1STAG)
(7-4)

where FBNC is the fraction of Blue aircraft not caught on

" the ground, RABA is the expected number of Blue aircraft

lRecall that stages are counted from the final
battle to the first battle. Hence ISTAG-1l is later in
time than ISTAG. '
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destroyed on the ground by a Red attacker that success-
fully attacks the base, and RAD is the expected number of
Red attacker forced by one Blue defender to abort their
=X mission.
. The payoff to Blue for an entire campaign of

- MSTAGE stages is given by

MSTAGE
M= ¢ (Bcasxcass!ISTAG) _pcagx casr(ISTAC),
ISTAG=1

(7-5)

*where BCAS, RCAS are the Blue and Red aircraft close air
support capabilities, respectiwvely. Thus, the problem
that the Blue decision maker (Red decision maker) faces
is to determine the aircraft allocation for each stage so
as to maximize (minimize) Equation (7-5) subject to

Equations (7-1), (7-2), (7-3), and (7-4).

Linear Model Solution

The Problem of an Infinite Number of Stages. The

game formulated in the preceding section is a continuous

game. That is, the force allocation ratios, ABAB(ISTAG)/

(ISTAG)' ADB(ISTAG)/BLUF(ISTAG), ABAR(ISTAG)/REDF(ISTAG),

o foaid
e
ki At s e

o BLUF

F-- and ADR(ISTAG)/REDF(ISTAG) may be chosen to be any real
number within the interval from zero to one. Thus there

are an infinite number of possible allocations for each

stage. In the algorithm developed in Chapter V, on the

other hand, it is assumed that there are only a finite

52

Aabecagtc.o Pres




BRI tin . o d A 11wt )

i oalle e uliniad L bl £
\
AR .
A |
PUCERP SRS PRI

-t

o 4

————

number of possible strategies at each stage. Thus it was

necessary to limit the strategy options in the following

way: the ratios (fractions) ABAB(ISTAG)/BLUF(ISTAG),

ADB(ISTAG)/BLUF(ISTAG), ABAR(ISTAG’/REDF(ISTAG), and

(ISTAG)

ADR(ISTAG)/ REDF must be non-negative integer

multiples of 1/M where M is a positive integer greater

(ISTAG) would be

(ISTAG)

than one. For example, if M=3, then ABAB

(ISTAG) ;3 prur (ISTAG) ;3 o BLUF

either 0,BLUF
With this notation, the total number of strategies that
each side has during each stage is given by the possible
number of ways M balls can be allocated to three boxes.

This is (Mf271) = {Mr2)(M+1)

In the test runs, M=3 and
M=5 were used..

Let s{(J,L) represent the fraction of the Blue
force allocated in CAS (L=1), ABA (L=2), and AD (L=3) for

(M+2)2(M+1) ). Let

all available blue strategies J, (J=1,
s(X,L), L=1,2,3, represent the ratio of the Red force allo-
cated in CAS, ABA, AD respectively for all available Red
strategies K, (K=l,i§iz%%§:ll). For example, if M=3 both
the matrices s(J,L), s(K,L) will be as shown in Table

VIiIi-l.

One Stage Equations of the Linear Model. Given for

any engagement between Blue and Red with force sizes

(ISTAG) (ISTAG)

BLUF ,» REDF , where the Blue has a fraction

s(J,1l) of his force assigned to the close air support,
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TABLE VII-1

STRATEGIES AVAILABLE FORCE ALLOCATION AT M=3

—— —
— ——

STRATEGY 1 2 3 4 5 6 7 8 9 10
0

Cas 3/3 2/3 2/3 1/3 1/3 1/3 0 0 0
ABA 0 1/3 0 2/3 1/3 0 3/3 2/3 1/3 0
AD 0 0 1/3 0 1/3  2/3 0 173 2/3 3/3

the fraction s(J,2) assigned to air base attack and the
fraction s(J,3) assigned to air defense where

3

L s(J,L) =1, s(J,L) >0, L=1,2,3.

L=1
The Red has a fraction s(K,l), s(K,2) and s(K,3) assigned
to close air support, air base attack and air defense

respectively. The payoff for a single stage 'of the game

with Blue playing his Jth strategy and Red playing his Kth

strategy will be

(ISTAG) (ISTAG)

PAYOFF = BCAS x BLUF xs(J,1)

(ISTAG)

= RCAS x REDF xs(K,1

(ISTAG)
(ISTAG)

(ISTAG) BLUF

REDF

= REDF [BCAS x

xs(J,1)

- RCAS x s(K,1)] (7-6)
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Equations (7-3) and (7-4) for the force size of Blue and

Red at the beginning of stage ISTAG-1l can be re-expressed

as ?

' BLur ISTAG~1) _ poy (rur (1STAC) 4 panc, BLup (ISTAG) :
- RABA x max [0, REDF (15T26) 4 5(x, 2)

- BaD x BLUF (I8T2C) 4 o(5,3))) (7-7) %

t

!

Ej RepE (ISTAG-1) _ 1o (2enp (ISTAG) | pone  pppp (ISTAG)
- BABA x max [0,BLUF (IST2C) 4 5(7,2)

3 - RAD x REDF (ISTAG) s(K,3)]) (7-8)
We can use BLUF(ISTAG) and REDP(ISTAG) as state

variables and find all possible values of these variables
at each stage by using the payoff function given in
Equation (7-6) and the transition functions given in

Equations (7-7) and (7-8).

But this procedure can be simplified. First let .
BI(ISTAG) be the ratio of the Blue and Red forces at

stage ISTAG. Then

o7 (ISTAG) _ BLyp (ISTAG)
%] REDF(ISTAG)
Hence the state variables REDF(ISTAG) and BI(ISTAG) con-

tain the same information as the original state variables

|
| pEpp (ISTAG) , 0 oo (ISTAG) | ,
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(ISTAG)

Second, define RR as the ratio of succes-

sive Red force sizes.

o (ISTAG) _ REDE (ISTAG-1)
3 gD (157AG)
Clearly, RR\ISTAG) 5 (ISTAG) .4 pepp(ISTAG) _ o\ .0 o)

i, the information in the original state variables BLUF(ISTAG)

Third, let the Red force at the beginning of the

compaign be REDFMSTAGE) = ipen pepp(MSTAGE-1) _ pppp(MSTAGE)
xRR‘MSTAGE) and in general REDF(ISTAG) can be calculated by
RepF (ISTAG) _ pppp (MSTAG)  pp (MSTAG) . (MSTAGE-1)

X ... % RR(ISTAG+1).

Now BI (ISTAG) g Rr{ISTAG) | ether with
REDF(MSTAGE) contain all of the information in the original
state variables BLUF(ISTAG) and REDF(ISTAG) .

(ISTAG-1)

Finally note that BI
g1 (ISTAG)

is a function of only

and the strategies chosen in stage ISTAG (Equa-

L“ tion (7-9))

op(ISTAG-1) _ BLup (ISTAG-1)
! " pepp (ISTAG-1)

(ISTAG) (ISTAG)

{max (BI x FBNC, BI - BABA

i ol
(]

(ISTAG)

x max[0,s(K,2) - BAD x BI xs(J,3)1)}

e

/ {max(FRNC, 1-BABA x max {0,BI (ISTAG)

x 8(J,2) - RADx s(K,3)1)} (7-9)
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In addition, note that RR is a function of only

BI(ISTAG) and the strategies (Equation (7-10))
o (ISTAG) _ REDF (ISTAG-1)
REDF(ISTAG)
= max(FRNC,l—BABA>:max[O,BI(ISTAG)

(ISTAG) (MSTAGE)

Hence only BI and the initial Red force, REDF

need be maintained to determine the state transition. 1If

the payoff function can be expressed as only a function of

BI(ISTAG) then we have reduced the two-state variable sys-

tem to an equivalent system with one state variable.

The payoff value equation (7-6) is a function of

(ISTAG) (ISTAG)

REDF and the force ratio BI . Let

(ISTAG) (ISTAG)

T(BI ,J,K) be the payoff value assuming REDF

equals one and Blue plays J and Red plays K at stage
ISTAG. ' ?

7 (1 ISTAG) 5 &) = Bcas x BI(ISTAG) 4 5(g,1)

- RCAS x s(K,1) (7-11)

Thus the payoff with an arbitrary Red force of REDF(ISTAG)
is

PAYOFF(ISTAG) = REDF(ISTAG):(T(BI(ISTAG),J,K)

(ISTAG-1) (ISTAG)

X ... XRR X T(BI +J+K) (7-12)
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(n) can be calcul;ted knowing only

Thus the PAYOFF
REDF(MSTAGE) and BI(ISTAG) for all values of ISTAG between

MSTAGE and n. For the remainder of this chapter we will

(ISTAG). This reduces

use the single state variable BI
the size of the problem by the square root of the number
of force sizes that could be considered in the two-state
variable model.

In terms of the single state variable model, Blue

wants to maximize (see Equation (5-5))

(MSTAGE)[T(BI(MSTAGE) (MSTAGE)

M = REDF ,J,K) + RR

(MSTAGE-1)

[(T(BI

(MSTAGE-l)’J’K)_+RR

(MSTAGE-2) (MSTAGE-2)

(T(BI ,J,K) + RR

(... + RRIre1?,5,5 + rr'?

1)

ezt ,a,00111 ... 1) (7-13)

subject to Equations (7-9) and (7-10).
| The dynamic programming approach discussed in the
next section will be used to obtain a numerical solution

for this problem.

Dynamic Programming Approach. An overview of

dynamic programming appears in Appendix B. Dynamic pro-
gramming is a recursive algorithm that normally begins

with an analysis of the last stage.

£l wl
> v
i
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At the last engagement of the campaign (ISTAG=l)

the Blue wants to play a strategy J to maximin the game

(ISTAG)

value (T(BI ,J,K)), while Red wants to select a

strategy K that will minimax the game value. Let
Y(BI(ISTAG)) denote the optimal game value for stage ISTAG

(ISTAG) (ISTAG)

assuming REDF = 1 and entering force ratio BI .

Y(BI(l)) can be found using the linear programming
(ISTAG))

(1)

algorithm to solve the one-stage matrix T(BI

(Ref Chapter II). By changing the value of BI to scan

(theoretically) all the possible values of the force ratio,

one can get the corresponding last stage (ISTAG=l) optimal

game value Y(BI(l)) for all values of BI(l).

Suppose we are at the next to last stage (ISTAG=2).
Both Blue and Red know that this is not the last engagement.
Blue wants to maximize the sum of the game value for this
stage and for the next (last) stage while Red wants to
minimize them. If Blue plays his Jth strategy and Red

plays his Kth strategy, then the payoff of this stage will

(2)

be T(BI ,J,K) multiplied by the REDF at the beginning

of this stage. As a result of playing those strategies

(1)

the new force ratio will be BI and the new Red ratio

will be RR(Z). As the optimal game value of ISTAG=l is

available (Y(BI(l))) for each possible entering force ratio,

(L)

T,BI , then one can find the payoff from playing J and K

at ISTAG=2 and then optimally at ISTAG=l.
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In calculating Y(BI(l)) at ISTAG=l it was assumed
that the Red has a unit force but as the Red force is

reduced to the ratio as a result of playing the second

stage, then the corresponding value will be Y(BI(l))}{RR(z).

(2) (2)

The value Y(BI(l)):cRR + T(BI J,K) represents the

payoff if, at the start of the next to last stage (ISTAG=2),

we have force ratio BI and REDF=1 and Blue plays J, Red
(1)

plays K (which lead to a new force ratio BI and a new

Red ratio RR(Z)

and then the optimal strategies are played
at the last stage.

Repeating this calculation for each combination of
J,K one can get the payoff matrix of the second stage.
Linear programming can be used to obtain the optimal game

(2’L (2)

value of this stage Y(BI By varying BI over its

full range of potential values we can obtain the corres-
ponding game value Y(BI(Z)) for all values of BI(Z).
Next we move to the next stage (ISTAG=3) and repeat the

process.

Solution Approximation. As mentioned earlier, it

is impossible to find the optimal values of the game
(Y(BI)(ISTAG)D at each stage for all possible values of

the force ratio (BI(ISTAGH.

Instead, the user specifies
the force ratios at which exact solution of the game will
be calculated. These values of the force ratio are called

grid points. Then at each stage the optimal value of the
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game Y(BI)(ISTAG) is calculated for each grid point and
a cubic spline interpolation is used to estimate the
optimal game value for all force ratios that do not

exactly match a grid point (see Appendix A).

~
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VIII. Verification and Validation

In the development of a computerized model, two

of the most important stages the builder must accomplish

are verification and validation. Without them the model

formulations, preparation, and translation into an accept-
able computer language are meaningless. This chapter will
present the procedures used to verify and validate the
linear model.

Differentiation between verification and valida-
tion is difficult since they are not independent processes.

However, verification is generally viewed as insuring

that the model behaves the way it was designed. Valida-
tion consists of testing the agreement between the behavior

of the model and the real system (Ref 11:30).

Verification Tests

The following verification tests were used to
demonstrate that there are no logical or computational
errors in the computer program (Ref 5:119). The first
test of the model was to demand that its behavior not be
obviously implausible. 1In the early development of the
model, the implausible results are apt to be of a gross

nature. For example, in a tactical situation, the model

may indicate a negative force ratio in the sense that one

62




Boncatd

side has a negative number of aircraft. These errors were
gquite easy to detect and rectify.

Another effective test is to attempt to check
model behavior using extreme levels of flow in the system.
Model behavior is more unpredictable under normal operating
conditions. For example, in the linear model results were
observed at a force ratio = 0, when the Blue has no force

F(ISTAG). In this

while the Red has it full force RED
case Red should assign all of his force at all stages to
close air support. Another test was made where both sides
have the same force size with the same capability. The
expected result is a game value of zero for all the stages.
Once these obvious checks were made, attention was
directed at more representative performance. The multiple
node test considered whether or not the model would provide
different behavior when presented with different inputs.
In applying this test on the model, the Red and Blue sides
were given equivalent capabilities fixed at one (i.e.,
each Red defender prevents exactly one Blue attacker from
reaching the air base). Table VIII-l gives the optimal
game value Y(BI(ISTAG)) for ISTAG from one to ten and
BI(ISTAG) from zero to twelve. Recall that the value
Y(BI(ISTAG)) is the optimal game value at force ratio

(ISTAG)) by

at stage ISTAG assuming REDF

culate the actual game value we multiply Y(I
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‘'results with a positive sign should occur if REDF

REDF(ISTAG). For example, if REDF

(3) - 100 ana BLUr(3) =50

will be BLUF'3)/repF‘3), or .5. For

a three-stage game with BI(3) = .5 the linear algorithm

the force ratio BI(3)

found Y(.S)(3) = =-1.5. That is to say, the difference
between the total number of Blue aircraft and the total
number of Red aircraft sent on close air support through

the three stages equals REDF(3) X Y3(.5) or -150. The same

(3)

and BLUF = 100 for three stages (as the aircraft for

both sides are assumed to have the same capabilities). In
this case BI(3) = 2. The algorithm found Y(2(3)) = 3.0.
Hence the payoff to Blue for the three-stage campaign

was 50 x 3.0 = 150, as expected. Similar tests were con-
ducted using force ratio pairs of (.1, 10}, {.2, 5},
{.24, 4}, {.4, 2.5} and {.5, 2} for air wars lasting from
one to ten stages. Some small errors were expected due
to the cubic spline interpolation approximation

and the linear extrapolation beyond the last grid

point. A percentage error is calculated for each of

these tests using

% Error =

x 100

Table VIII-2 shows the results of these tests. The first

(ISTAG)).

line for each case is Y(BI The second line is

(ISTAG)).

Y(1/BI

The third line is the percentage error.
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TABLE VIII-2

THE PERCENTAGE ERROR IN

THE LINEAR ALGORITHM

ERROR FR STG3 STG4 STGS
" .10 -2.60 -3.37 —4.32
10.00 26.00 33.67 43.17
3 0.000 .000 .000

«20 -2.30 -3.22 4.06
5.00 11.50 16.07 20.11
% .000 -.027-1.016

o25 -2022 -2099 ‘-3093
4.00 8.89 11.94 15.70
nmo e 150 haat') 208

040 -1-80 -'2n58 ‘-3-45
2.50 4.50 6.46 8.64
.000 .152 .105

050 -'1050 -2025 "'3-07
2.00 3.00 4.50 6.16
.000 .002 .39

STG6 STG?7
-5.30 -6.29
53.00 62.89

Qmo 0000

—4- 98 -5.96
24.85 29.78
-.123 -.027

"4.% -5-89
19.46 23.41
e 751 - 584

-4.41 -5.37
11.00 13.39
-.166 -.292

-3.93 —-4.82
7.91 9.73
.727 .908

STG8 STG®
-7.28 -8.27
72.81 82.75

.m .m

STG10
-9.27
92.70

.000

-6.94 -7.93 -8.93
34.73 39.69 44.67

.034 .062

.054

-6.88 -7.87 -8.86

27.37 31.35

35.33

-.473 -.398 -.350

-6034 .7032 -8.30

15.81 18.24

20.68

~e 306 -~ 308 hat) 289

-5.74 -6.67

-7- 57

11.59 13.40 15.21

.895 .475

.508
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There was no error in the first three stages. The maximum

error found was just over one percent.

Validation Test

To validate a war game, a means of'building confi-
dence in the game's ability to achieve its objectives must
be devised. An important distinction between verification
and validation is that models can be completely verified,
while complete validation is impossible. Richard L.

Van Horn (Ref 13:247) suggests that a model may be con-
sidered valid when it has achieved an acceptable level of
confidence.

Berkovitz and Dresher (3:155) have published
results of a linear game when the individual weapon systems
on each side have equal capabilities and the fraction of
the opponent's force caught on the ground in an air base
.‘.1 attack is one., Although they did simplify the problem with
the above assumptions, they were also able to obtain solu-

i tions for a continuum of strategies. Table VIII-3 is a
;l{ | copy of their results for up to an eight-stage game. That
y is, Berkovitz and Dresher do not require that the fractions
F- of the Blue force sent on CAS, ABA or AD be 0, 1/3, 2/3,
or I (M=3). 1Instead, they allow any fraction of the force
to be sent on CAS, ABA or AD (of course they require the
individual fractions to sum to one). Because of their
"continuous" feature of the Berkovitz-Dresher results,

some differences between the two results should exist.
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For example, consider the case of a three-stage
game with REDF(3) = 100 and BLUF(3) = 5, In the continuous
case the optimal strategy for the third stage (start of the
war) is that Red sent 5 aircraft in air base attack and 95
aircraft in close air support, while the optimal strategy

for Blue is to send his force on air base attack and/or

air defense. The possible results of this stage is a
payoff equal to -95 for Blue with the remaining force

sizes (Table VIII-4) depending on the Blue strategy.

TABLE VIII-4

THE RESULTS OF CONTINUOUS STRATEGIES

Blue Strategy

(2) (2)

ABA AD REDF BLUF

5 0 95 : 0

4 1 96 1

l 3 2 97 2
; 2 3 98 3 I

& 1 4 99’ 4

J i 0 5 100 5

In the second and first stage, one of the optimal strate-
_f gies for both sides is to send all the rest of their forces
on close air support missions. The total payoff from
Berkovitz and Dresher is -95 + 2 (BLUF'2) - repF{?)) = -285.
This result is given in the Berkovitz-Dresher Table

(Table VIII-3).
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Consider now the same problem but with a finite
set of strategies, i.e., the fraction of forces sent is
an integer multiple of M. Assume M=3, then Red cannot
send 5 aircraft on air base attack. Either he sends 33 air-
craft on this mission or he send nothing. The obvious
solution in this case is that he sends nothing on air base
attack and sends all his forces in close air support
for all three stages. In the mean while, Blue will send
his five planes on air base attack at the third stage
(start of war) and send them on close air support missions

at the second and first stages. The results are in

Table VIII-S.

TABLE VIII-5
THE RESULTS OF DISCRETE STRATEGIES (M=3)

Stage G Smteries e mopUSDO)  pp (SO o
3 o s 0 100 5 95 ~100

2 o s 0 95 5 95 - 90

1 5 0 o 95 5 95 = -90
~280

Thus the optimal payoff obtained using the linear algorithm
is -280. This example shows the reason that differences
will exist between the results of this special case of the
linear algorithm and the Berkovitz-Dresher results. Let
B(BI(MSTAGB be the total game value in the Berkovitz-
Dresher solution at force ratio BI and total number of
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stages MSTAGE assuming that Red has initial force of one
unit. Table VIII-6 summarizes the Berkovitz-Dresher
results for all of the force ratios (grid points) used in
the linear algorithm. Table VIII-7 shows the fractional
differences between the linear algorithm results

(Table VIII-1l) and Berkovitz-Dresher results (Table VIII-6)

calculated as follows:

MSTAG), _ p (g {MSTAG),

(MSTAG))

Y (BT

Fractional Difference =

¥ (BI

for MSTAGE = 1'2'000'8 a.rld M=3.

Table VIII-8 shows the optimal game value at M=5

and Table VIII-9 shows the fractional difference between

the linear algorithm (Table VIII-8) and Berkovitz-Dresher

results (Table VIII-6). It was expected that the linear
: algorithm results for M=5 would universally be closer to
§ the Berkovitz-Dresher results than those obtained for

M=3. This proved not to be the case at each grid point.

!
i
i There appears to be an error in the Berkovitz-Dresher
|

table. Another author (Ref 9 :76) also found this error.

Comparisons to OPTSA

”:‘ Until now we have only tried validating

the model when aircraft capabilities on both sides

are identical. To make sure that the model gives reason-

able results when the sides have different capabilities,
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TABLE VIII-7

2 THE FRACTIONAL DIFFERENCE BETWEEN THE LINEAR
. ALGORITHM RESULTS AT M=3 AND
, BERKOVITZ-DRESHER RESULTS

FR 8TCGL  3TG2  ETG3 876 S8TEY 87646 STGY STGE
-~ Q.00 .00 ().()0 G005 0,000 0000 0,000 0,000 0.000
3 0,000 0,000 ~.018 -,.08G ~.08BL —-.075 ~.072 ~.0867
0,300 D000 -, 038 089 = 078 -.065 ~.0537 ~,.050 .

)
-
3
.

o~ Q000 0,000 —, \)\*;2 e QE3 - 081 042 0037 ~,032

et Qo000 Q300 ~.048 —~-,037 —.0861 _Oéi.l -+ 08346 —-.,049

LOCO 0,000 ~,013 - 089 ~, 082 <.045% -,038 ~,033

. ™ Q.00 G000 - 002 -, 030 ‘*o().'."éi =028 -,022 ~,019
i QO 0,000 - 000~ 030 ~.049 =-,042 -.034 ~.030

QGO G080 ~,uG0 =000 - 00? -,013 ~.014 ~-,.014
D00 G000 0000 - 000 L0228 L0535 0084 L1110

1

1628 2,090 0,000 'f..).f}()’..') L0020 L0366 L0777 .

115 L iE1

. LS50 2.000 0,000 0,000 ¢.000 005 018 L,030 .044
1o7% QL0U0 0,000 0.000 -.014 ~,023 -,026 ~-.018 ~-,012

200 0,060 0,000 0,000 0,000 ~.,005 ~-,006 ~-. 005 ~,003

2050 2,000 0.0C0O 0,000 - 033 ~.048 ~,044 ~,037 ~,0323 .

T,00 0,000 9.000 0.000 -,010 ~.012 ~.008 ~,007 -,008
3.50 0,000 9,000 ~,004 -.038 -.03¢ "'00:4 - Q2P ~-,025 .

<y 4,00 G000 6G.000 ~,012 =061 —.0T3) —,053 ~-,045 ~-,038

~ AT0 o000 0,000 ~,024 ~.048 .08 Q80 ~, 051 ~.044

900 GLOR0 0000 =043 ~, 037 — 072 ~-.085 ~,058 —-,.049

i -~ TLEQ 0,000 0,000 - 059 ~, 040 =088 - 078 0084 -, 058
“ . ~ EdVD 0200 D000~ 071 - 051 041 ~ 035 - 030 ~,Q26
“ GGG 0e2u0 0.000 - 04T ~ 0040 048 - 041 - 035 ~.031
Q 2GR 0.C00 0,000 ~,08Y =~ 0&7 =~ 0Z3 - 0486 ~,040 -,033

a 7500 040000 G.000 -, 004 - (074 ~ 080 ~.0850 ~.043 -.038
- .00 0,000 0,000 =, 050 ~,080 -.0865 ~.084 ~,047 ~,041
- .50 0.000 0.000 -,047 ~,083 ~.046% —-,.038 —-.050 ~,043

: (;" o(:‘Q 000'\)0 ().‘\‘OO "‘00“"‘3 "'OC’LD‘}' "0';);;: 'v's.\'c')l “${)52 ""00""*\.'5

P00 04030 0,000 ~,04L ~ 08% ~.070 ~.083 ~,055 -,.048

e 1050'”) 000‘:'0 Ob\)()\) “\)\:E')' - )R '10?8 ""00\.)(.() ‘005/—" "0050

d 130350 0000 0,000 ~,03848 —~ 089 -~,08L ~,0&8 ~,089 -,051

. 14,00 0.009 0.0060 =y 0E4 - 08P -, 0833 ~,070 -, 0860 ~.053
- o~ ilodo DeDGH QL0000 ~ 033 ~,007 L0828 -, 72,*.062 -+ Q54
| © 12,00 6,000 0,000 -.031 =090 ~+GES =.074 —.083 —-,055
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TABLE VIII-9

THE DIFFERENCE BETWEEN THE LINEAR ALGORITHM
RESULTS AT M=5 AND BERKOVITZ-DRESHER RESULTS

FR STGl STG2 STG3 STG4 STGS STG6 STG7 STG3
0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.05 0.000 0.000 -.018 -.050 =-.049 -.042 -.036 -.032
.10 0.000 0.0Q00 -.038 -.028 -.023 -.020 -,017 -.015
.15 0.000 0.000 -.007 -.032 -.023 -.024 -.020 -.018
+20 0.000 0.000 -.000 -.006 -.007 -.006 ~.005 -.004

.25 0.000 0.000 -.000 ~.019 -.015 -.014 -.015 -.016
.30 0.000 0.000 -.000 -.000 -.008 -.010 -.010 -.009
.40 0.000 O. -.000 -.001 -.001 -.002 -.002 -,003
.50 0.000 O. -.000 -.000 -.001 -.000 -.001 ~-.004
.75 0.000 O

000
000
.000 -.000 .000 .036 .066 .094 .1l16
000

000 .042 .036 .123 .157

.000 -.000 .007 .015 .026 .039

e

1.00
1.25 0.000
1.50 0.000 0.000 9
1.75 0.000 0.000 0.000 .000 -.012 =.021 =.015 —-.0l1
2.00 0.000 0.000 0.000 0.000 -.001 -.000 -.002 -.005
2.50 0.000 0.000 0.000 -.000 -.001 =.005 -.004 ~.004
3.00 0.000 0.000 0.000 -.011 =.024 =.022 =.019 ~-.017
: 3.50 0.000 0.000 0.000 -.005 -.0l1 -.015 -.015 -.0l4
N 4.00 0.000 0.000 0.000 =.019 -.021 =-.017 =-.017 -.017
1 4.50 0.000 0.000 0.000 -.006 -.025 -.021 ~-.018 -.0l5
5.00 0.000 0.000 0.000 -.005 =-.009 ~-.007 ~-.006 -.005 ’
5.50 0.000 0.000 -.001 -.015 -.020 -.016 -.01l3 =.011 :
, 6.00 0.000 0.000 -.003 -.023 -.028 -.023 =.020 =-.017
; 6.50 0.000 0.000 -.005 -.029 -.032 -.026 -.022 =.019
| 7.00 0.000 0.000 —-.009 -.031 =-.035 -.029 =-,025 =.022
b 7.50 0.000 0.000 =.013 ~-.026 -.041 ~.034 —.029 -.025
o 8.00 0.000 0.000 =-.019 -.022 -.045 -.038 -.032 -.028
% 8.50 0.000 0.000 -.025 -.020 -.047 -.040 -.034 -.030
o 9.00 0.000 0.000 =-.030 ~.021 -.048 =.041 =-.035 =-.031
; 9.50 0.000 0.000 -.034 =.025 -.049 -.044 -.038 -.033
| 10.00 0.000 0.000 —-.038 -.028 -.023 =.020 =.017 -.015
- 10-50 o-m O-W -0036 -0031 --026 -.022 "'0019 -0017
11.00 0.000 0.000 -.034 -.034 -.028 -.024 -.021 -.018
11.50 0.000 0.000 -.033 =.037 -.030 =.026 =.022 -.020
12.00 0.000 0.000 -.031 =-.039 -.032 -.027 =.024 -.021
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the author compared the linear model results to those
obtained using OPTSA. But, since there are no published
tables of OPTSA results, the author generated a computer
code (Appendix E) to implement OPTSA. This model provides
the optimal game value for a three-stage game. In the
test, assume REDF(3) = 100 and BLUF(3) = 125, and all
aircraft capabilities equal one (after 51.16 cp second
execution time) OPTSA provides a game value of 75, which is
exactly the same as given in Tables VIII-1, VIII-6, and
VIII-8. Those tables give Y(l.25(3)) = ,75; i.e., the

optimal game value = .75 x REDF(3)
(3)

= 75. Now execute OPTSA

(3)

using the following data: REDF = 100, BLUF = 500,

BABA =1, RABA = 3, BAD = 1, RAD = 3, BCAS = 2, and RCAS =1

it gives an optimal game value of 2138,.74. The linear
algorithm with the same data (Table X-1) gives Y(5(3))

21.19; i.e., the optimal game value = 21.19 x REDF(3) =

2119. The error in the linear algorithm is 0.889 percent.

aslaitins

i




STy Lz

O WY SN

IX. An Interactive Game Algorithm for Training and

Assisting the Commander

Introduction

As most operational commanders of general purpose
forces know, the ways such forces are employed can have
a great impact on the outcome of a conventional tactical
campaign. While it is true that larger and better equipped
forces win over inferior forces more often than they lose,
history (6:1:28) is replete with examples where superior
forces were defeated as a result of the unwise employment
of the superior forces, and the wise employment of the
inferior forces. Using combat simulations, it is also very
simple to demonstrate the defeat of superior forces through
a combination of "smart" and "dumb" force employment by
the victor and the loser, respectively. Even when a
"black and white" win or lose is not the issue, it is
clear, both from historical and analytical perspectives,
that a wide range of outcomes in conventional tactical
campaigns can be expected, depending upon how the forces
are used.

In this context a "strategy" is a series of daily
decisions on allocating air forces among close air support,
air base attack, and air defense missions. It depends

each day on the capabilities of the two sides, the stage
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of the campaign, and the other critical variables.

The program GAME is designed to help train and
assist the commander with regard to the allocation of
tactical air war resources. The program GAME uses the
optimal game values provided by the linear algorithm.

For any given scenario, GAME computes the "optimal" strate-
gies for each side. The only difference in the GAME
algorithm between the assist and training mode is when the
computer prints the optimal strategy. When GAME is used

in the assist mode, the computer plays the same side with
the commander and it prints both sides' optimal strategies.
The commander can then specify strategies other than the
optimal strategy and determine their effect on the game
value. When GAME is used to train the commander, the com-
puter plays the enemy against the commander and it does not
print the enemy's "optimal" strategy until after the com-
mander has entered his strategy. The commander then has
the option to see one of his optimal strategies. This
optimal strategy will appear before the commander has
entered his strategy and the game will continue based on
the strategy chosen by the commander, not his optimal

strategy.

The Algorithm

GAME uses a copy of the results of the linear

algorithm., Before running the GAME program, we must




execute the linear algorithm program (F3GAME). The program
F3GAME asks the player to specify: (1) the maximum number
of stages; (2) the aircraft capabilities for both sides;
(3) the number of grid points. The number of grid points
is used to determine the values of the state variable
(force ratio) at which solutions will be obtained. 1In
solving this game, the initial Red force size is assumed
to be 1. After running the program F3GAME, it will write
on tape 3 the above data plus; (4) the force ratio at

each grid point; and (5) the game value for each stage at
each grid point. Then, program GAME will execute. First
it reads the data from tape 2, stores the force ratio at
each grid point in the vector X with size (40), and stores
the game values in a vector Y with size (400).
Conceptually, this information can be represented as in
Figure IX-1 with up to 40 points for each stage. Second,
the program then requires the player to\select what kind
of game he wants to play, training or assisting. Third,
the player enters the total number of states he wants to
play (MSTAGE) and the number of aircraft available to each

UF (MSTAGE) ), REDF (MSTAGE) ).

side at the start of the game, BL
GAME is able to efficiently determine the optimal

strategies and the corresponding game value at any arbi-

trarily selected stage (ISTAG) of the game by solving

a single game. The entering force ratio BI(ISTAG)

is given. Using this force ratio GAME generates the
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(ISTAG)

one-stage payoff matrix for the game (T(BI ,J,K) for

BI(ISTAG)

J=1,...B, B=1l,...R. is also used to generate,

(ISTAG-1)

using the state transition functions, BI and

RR(ISTAG) for any selection of strategies J and K at ISTAG.
This resulting force ratio is then used in Figure IX-1,
with cubic spline interpolation between grid points, to
generate v(1(ISTA6-1)y ¢ 2131 J=1,...B and K=1...R. The

(ISTAG) (ISTAG—l))

sum of the one-stage (T(BI J,K) and ¥Y(I

X RR(ISTAG) values are the payoff values in the single
stage game to be optimized. This process is summarized in
Figure IX-2. The solution of this game provides the game
value and optimal strategies for Blue and Red at ISTAG.

Note that in the training mode, regardless of the
strategy selected by the commander, an updated force ratio
and game value can be calculated. At the next stage we
use the entering force ratio and the procedure discussed
above to determine the optimal strategies and game value
by again only solving one game!

In the training mode GAME generates a random
number and selects,according to this number,one of mixed
strategies for the side it is playing. When the commander's
strategy is entered into the computer, GAME calculates and
prints the game value of this stage, the total game value
from his play and the previous play(s), and the new state
of the game according to the chosen strategies of both

sides. This procedure continues until the end of the game.
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Recall that the computer strategies are printed before the
player's strategy enters the computer in the assist mode
and is printed after it enters in the training mode.
Appendix C contains the player guide and the code for

GAME.
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X. Comparison of Weapon Systems

Developing countries are frequently involved in
difficult weapon system procurement decisions. For
example, suppose a country needs to improve its tactical
air force. It may have several different alternative air-
crafts available to purchase (e.g., F-15, Mirage, etc.),
each with different capabilities and different costs.

Given a limited budget, which aircraft should be purchased?

This depends on how well each of the alternative aircraft
perform against the corresponding forces of a potential
enemy. It may also depend on the length of the war.

The purpose of this chapter is to show how multi-
stage game theory may be applied to help supply insight
to this procurement question. In the next section the
importance of using optimal strategies in these force-on-
force comparisons is discussed. This is followed by.a

simplified illustrative example.

R The Importance of Optimal Strategies

. Many simulations of force-on-force battles begin
by stating the enemy strategy (e.g., 15% of the aircraft

{ will be allocated to air defense, 40% to air base attack,
and 45% to ground support). At the worst, the allocations

are "thought up" in order to have something to make the
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program run. At best, the allocations are considered a
"best estimate" of the enemy's behavior. Typically, a
similar procedure is used to develop the strategy to be
followed by the friendly forces. These strategies are then
"fixed" or held constant throughout the evaluation of
several general-purpose forces (Ref 6:29).

Even when the strategies chosen are given "careful
thought" and analysts choose "good strategies," a procedure
that uses the same strategy in comparing alternative forces
makes invalid comparisons. To see why this is so, con-
sider a Blue force that is to be compared against a Red
threat. "Good" strategies are selected for both sides,
and a campaign is fought. Let the outcome, in terms of
some measure of merit, be called V,. Suppose now that a
new weapon system is added to the Blue force and a cam-
paign is fought again, with the same strategies as before,
and a more favorable outcome, V2, is achieved. The state-
mént usually made at this point is, "The value of the
weapon system is the incremental difference in the out-
comes, V2-V1." However, the quantity, Vz-Vl, could well
be an overestimation of the effects of the weapon system.
The reason is simple. In a conventional tactical campaign,
there generally exist alternative strategies for Red that
could at least partially counter the new weapon system.
Conversely, V2-Vl could well be an underestimation or

overestimation since there probably exist alternative Blue
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strategies that would make better use of the new weapon
system. Thus, to say that in a conventional tactical
campaign (where both forces have a wide range of strategy

options) that the value of a weapon system is V2-V may

1’
be an incorrect and misleading statement.

Of course, the problem is the same when alterna-
tive Blue forces are compared. The best Red strategy
against Blue alternative force A is probably different
from the best strategy against Blue alternative B.
Similarly, Blue's best strategies will be different.

It becomes obvious then that the relative effective-
ness of opposing general-purpose forces should be deter-
mined in a context where each is allowed to follow an

"optimal" allocation policy which maximizes the force's

effectiveness.

Example

This section contains an example which illustrates
how a multi-stage simultaneous game can help the decision
maker answer the question of which tactical airplane
should be purchased with a fixed budget. The example will
use the linear model. The country with the procurement
decision will play Blue. His enemy is the Red force.

Suppose Red has 100 aircraft with the following
capabilities: RABA=3, RAD=3, RCAS=1. Blue may purchase
either of two aircraft called type A and type B. Type A

has the following capabilities: BABA=1, BAD=1, BCAS =2,
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Type B has capabilities represented by BABA=1, BAD=1,
BCAS=3. Thus type B is the better aircraft due to its
improved close air support capability. However, the life
cycle cost of aircraft type B is 1.25 times the life cycle
cost of aircraft type A. Hence, with a fixed budget, more
type A aircraft can be purchased.

To analyze this problem, two runs of the linear
algorithm were pérformed--one with the Red aircraft versus
Blue type A, and the other with the Red aircraft versus
Blue type B. Tables X-1 and X-2 show the results of the
first and the second run respectively for up to a l0-stage
(day) war. Across the top are the 10 stages and down the
left side is the initial force ratio. The tables contain
the optimal game value to Blue per Red aircraft.

For example, consider the Red versus Blue type A
campaign. Recall that RCAS =1 and BCAS=2. The close
air support capabilities of the two forces are expressed
in terms of equivalent close air support missions. Hence
Red aircraft has one equivalent close air support mission
and Blue aircraft has two equivalent close air support
missions. Suppose that the initial force ratio is 2.0 and
the war lasts 5 days. Then, Blue will be able to perform
6.7 more equivalent close air support missions per Red air-
craft. Since the initial Red force was 100, at the con-
clusion of the war, Blue will have performed 670 more

equivalent close air support destruction missions against

87




4.50 2,00 13, 23.35 29,10 33,21 2w, 31
A7, 0A 32.88 32,57 3a,45 50,
30,19 IA.TO 43,13 39,484 55,

S0 2,00 15, S
.50
33.33 30,54 47,71 HA.85 51,93 59,1
)
1

4 !
- .
:] . - R
| ’ :
-
|
4 - {
g - TABLE X-1 . .
I
TABLE OF GAME VALUES FOR BLUE TYPE A VERSUS RED f
R 731 3TH2 3733 3TH4 STSS 3THA4 X737 ZTH8  3T59  LT510
7 NN <1,00 2,00 =3, 00 -3,00 =5, 00 =3, 00 =7, 00 -2, 00 =S, 00=-1{0. 00
e - ' LS =30 =1, B30 =2, TN ~2,95 34,47 -5,.37 4,37 -7,.3% -2,32 -3,.31
g S0 =30 <1,AN0 =2,47 =337 -3,30 =5,37 -A.234 -F.23 -5.22 -3,21 i
L8  =,F0 ~1.30 =2,37 =3.85 -34.20 =5,17 -4.14 -F.13 -2.12 -4,11 !
LD =30 =1,27 =2.37 =3.158 -4.10 -5.,07 -Aa. 084 =703 -1.02 -3.01 {
L25 = S0 =117 =2.17 =E.f1A -3, 00 -4,97 -9,94 -5,.93 7,32 -3,91
LE0 =30 ~1.,07 2,01 ~2.39 -3,30 -34.75 -9.73 -5.70 -7F.83 -3,4% |
9 CA0 = 2D = BT ~1.77 ~2.54 =3,55 -3,.9% -0,.39 5,37 =-7.35 -5.45
LS D00 - 50 ~1.49 2,37 3,20 ~3.2n -0, 84 -5.22 -7.21 -3.20
.75 LS50 L0 -, ~1.73 =2.85 -I.50 -3.93 =5,41 -3,2% -7.17
1.0 1,00 - . .19 -.54 -1.11 -1.99 -2.08 -2.%% -3.11
1.25 1.50 1.44 . 31 .45 S11 =21 =52 -.31 -1.10
1.50 2,00 2.50 . 3.4n 2,83 4.94 4,77 5.5 3.74 5,23
1.75% 2.30 3.2%5 . 4,99 5.22 A. 01 A,75 F.S1 2,23 9,05
.00 .00 4,00 . S5.74 A.?0 F.AFT REA .53 10,84 11,53
! 2.90 4,00 &5,33 . 9, AT ll 42 13,35 19,37 17.20 19,18 21.15
- .00 S.00 8,33 . 14,59 17.85 20,72 #»H.78 2A.8% 29.84 32,53
"i 2,50 A,00 10,0 17.72 1,49 29,23 ¢=d.95 32.589 WB.40 40,12
; 4,00 7,00 11, SN, 233 2%.22 83.71 23,12 32,53 42,98 47,30
. .q.
1

n 3
4
q. fl_l DI I i)

{

o S.50 10,00 15,
: § a.00 11.00 182,
= .50 12,00

<, 7.00 13,00
a .0 13,00
g &, 00 15,00
- i : 2,50 15,00
2,00 17,00

L g G0t 4 G O e g G D e D 0D D e T D e
OGO DS p YRR B0 I N UIRY RGN I TP IR « O Y I ) I ] |_-_l o

44 34.34 52,19 an. 02 &7.83 7
332,85 45,12 S&.587 &5,123 73,485 12.
32,45 51.33% &1.15 Fu.23 79.49 .
45,77 S5.72 A& 5,49 25,33 35, 1410
33,258 59,52 F0.10 30,454 g1.161&1-uﬂ115-

A

il
f CSY N (O

QO 3 e D ) 4 MO D 0 R G

BTG U N - e
B U T I I I RPNy Y M S T [ TPy I O
-

0~ A D

1)
>
SO R G0 e G O o O R )

a5
3
=

[ YR TR (O T (V)

1)




o HEF O

—————W

e
0, 0N
NS
.10
.15
20
.25
30
30
.5‘:'
TS
t.00
1.295
1.50
1.75
Z. 00
2.50
3,00
3.50
4,010
4,50
S. a0
5.5N0
A 00
a.80N0
7. NN
750
R, 0N
.50
@, 0N

TABLE X-2

i e r————

TABLE OF GAME VALUES FOR BLUE TYPE B VERSUS RED

3TH1

-1.00
-. A9

-.70

-. 25

p

.
-
L]
-
-

e g s
oo i

- S0
1.25
2. 00
.73
.90
4.25
S.00
.50
R.00
.50

11.00

1e&.30 .

14,00
15.50
12.00
12,590
20.00
21.50
23,00
24.50
2a, 00

ORI U I TR O

5T3E2

-2.00
-1.70
-1.40
-1.2¢2
-1.07

Y l:-‘a
-. 77
-. 47
“e ﬂﬁ

s
1,47
.3
4,50
S.58
5,47

10,00
13.33

YD IR Ul D )
~J iy I

ke
@0 <
E U

STH4
-4, 4n
-3.52
-2, 37

| I O I |
e« o o @
L]

3P0 O D0 0 G

J
3\

[

"
e TS Iy O S Y I Y (Rl £ 1]
Fv s 0O fe D 00 L0 S N

2.40 2,
5.33 &,
2.22 3,09
3.20 9,73
12.32 15.13
132,43 23,53
2e. 9 28,21
25./7 3.3
3,27 237.45
32.35 42.05
35.45 345,488
40, s 51.34
43,585 55,95
47,23 AN, 55
Sn.32 &5.17

54. 41
SE.
21,53

59.78
74,39
$3.00

ST3S
-5. 00
-4.,47
-3.,23
-4,13
-2,92
-;3 . 83
-3.47
-32.30
-2.92
-2.04

31

1.78

730

9.29
11.29
17.99

28.85 |
34,30 40

39.94

45,58 5i.q

51.21
55.85
52,55
53. 13
v3.81
79.44

ITRT
-7.00
-, 37
-, 20
e US
==, 90

T e TN ?5 -

-0, 55
-5.19
-3,32
-3,.94
-. 35
1.10
Q.15
11.345
13,52
3.9
3=, TA
An, 473

3 03,11

al, 72
A9, 44
7. 12
=a.22

J
[ 3
0
—

o
=0 O Jeows o) 10

=300 e (O DY >
DY R 0= Lo 0 fr e e

= O S e s e
fO W ¥ 0w

L}
.«

5754 EZT514T7
-3, 00=-10, 0N
-3.31 -9.z29
-2.15 -9,14
-3, 01 =-%,93
=7.35 -3,24
-7.71 -3,49
-7.4% -3,47
-7.14 =-3.12
2,73 ~=7.7TA
-5.89 -a.87
-1.39 =-1.37

.39 e
11.07 12,04
14,43 1S5.51
17.81 19,45
&9.95% 32.39
42,234 S3,57
52,52 53.57
AR.24 7S5.2%9
T7.93 25,00

27.481

D5 AR

FF.ILI07, 39

1107.12115.22

GF.52104,88114.30123. 91

S7.02100, 19113, 34125, 42133.40
VI BB, 25122, 01135, 15150, 29

23.07100.31115,. 51130, 531345, 233180, 97
N, 701 NE, 9H12R. 15139, 3T155. 5117155

95, 33113, 50150, 82147, 02145, 19132, 35

N

89




A 4

Red than Red will have performed against Blue. Figures
X-1 and X-2 show the same results graphically. The hori-
B zontal axis represents the force ratio, the vertical axis
¥ the game value. Each curve represents a different number
of stages in the war.

Now let's examine the preferences for type A versus

type B aircraft for different levels of the budget con-
straint. Recall that type B aircraft cost 1.25 times as
much as type A. Hence, if the budget constraint permits
Blue to purchase 50 type A aircraft, the alternative

type B purchase would be 40 aircraft. The initial force
ratio can be calculated using an initial Red force of 100.

The game values in equivalent close air support missions

per Red aircraft for a 10-day (stage) war can be found

from Tables X-1 and X-2. The results are summarized in

, Table X-3.
- | ,
g TABLE X-3 |
; | PREFERENCE AS A FUNCTION OF BUDGET SIZE
3 l = — =
4 Number of Initial Game Value
P Aircraft Force (per Initial
3 Purchased Ratio Red Aircraft)
= Type A Type B Type A Type B Type A Type B Preference
k-
] { 50 40 .5 .4 -8.20 -8.13 B
125 100 1.25 1.00 -1.10 -1.87 A
250 200 2.50 2.00 21.15 19.46 A
' 500 400 .50 4.00 61.70 96.68 B
: 90
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It is noted that the preferences change based on
the initial force ratio. Figure X-3 can be used to deter-~
mine the force ratios where preference changes occur.

The vertical axis continues to be the game value while the

upper horizontal axis represents the force ratio for the
plot of the Blue type A versus Red and the lower hori-
zontal axis represents the force ratio for the plot of

Blue type B versus Red. The dotted curve represents the
game value as a function of force ratio for the Blue type B
versus Red l10-day campaign. Initially, type B is preferred
to Type A. When the type A to Red force ratio reaches

about .75 then type A is preferred. Another cross-over

occurs when the type A to Red force ratio is 1.7 and 2.2.
A final cross-over occurs when the type A to Red force
ratio exceeds 3.3. For all type A to Red force ratios in
excess of 3.3 Blue type B is the preferred purchase.
Table X~4 shows that the preference can also vary depend-
ing on the number of stages in the war. Assume the budget
allows the purchase of 125 type A or 100 type B Blue air-
craft.

Finally, Figure X-4 illustrates this concept for

the ten stages.
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A TABLE X-4
I! PREFERENCE AS A FUNCTION OF NUMBER OF
STAGES IN WAR
Number of Game Value

3 Stages Type A Type B Preference
. 1 1.5 2.0 B
- 2 1.44 1.67 B
| 3 1.15 1.22 B
? 4 .81 .82 B
T | 5 .45 .41 A
LL | 6 .11 -0.02 A
: ﬁ 7 -.21 -.46 A
E f 8 -.52 -.92 A
1 9 -.81 -1.39 A

10 -1.10 -1.87 A
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Fig. X~4. Game Value for Blue Type A (Solid) and
Blue Type B (Dotted) Versus Red
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XI. A Modification to the Linear Model i

Introduction

The linear algorithm does not allow for air-to-air ;
attrition. 1In this chapter, a binomial probability dis-
tribution is used to represent

1. the probability that an air base defender kills

an air base attacker,

2. the probability an air base attacker that sur-
vives the initial attack by the air base defender is able
to return fire and kill the air base defender, and

3. the probability that a weapon dropped by an
air base attacker that is not engaged by an air base
defender kills an aircraft caught on the ground. The air
base attacker is assumed to carry M weapons (bombs).

Formulation of the Binomial
Kill Probabilities

Consider a one-sided combat between two homogene-
ous forces, a force of N indistinguishable "targets" and
a force of Z indistinguishable "interceptors" each having
M shots. Suppose the following assumptions apply:

1. At a fixed time the locations of all N targets

are known by the interceptors and hence are vulnerable to

intercept.




2. Each interceptor can attack only one target in
air-to-air combat (M=1) but it can attack up to M targets
in ground attack.

3. The Z interceptors decide to allocate their
shots among the N targets as uniformly as possible to maxi-
mize the marginal expected value destroyed. If ZxM is an
integral multiple of N, then each target will be assigned
exactly L=(Z x M/M) shots, and the probability of survival
of each target will be equal to SUR(L) where SUR(L) =
(l-p)L.

If ZxM is not an integfél multiple of N, then we

can express the ratio L = (2 xM/N) as
L=I+F (11-1)

where 1 denotes the largest integer smaller than the ratio
L, and F denotes the fractional part of the ratio. 1In this
case the optimal targeting will be to allocate (I+l) shots
to a fraction F of the targets and I shots to the rest.
Thus, the average survival probability is given by SUR(L),

where
SUR(L) = (1~F) (1-p) L+ F(1-p) I*L = (1-p) T (1-pF) (11-2)

For L less than unity zxM<N, then I=0, and SUR(L) can

be reduced to the simple form

SUR(L) = 1 - (pxZxM/N) for ZxM<N (11-3)
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Let K denote the number of targets killed and E(K)

denote the expected number of targets killed, then

E(K) = N(1-SUR(L))

=fx2xM for ZxN<N

1 (11-4)
N{l1-(1l-p) " (1-pF)] for ZxN<N

The binomial equation (11-4) will be used in the binomial

model of air war.

The Binomial Model--Definition
of the Input Quantities

(ISTAG)

BLUF = total number of Blue aircraft at the begin-

ning of stage ISTAG.

F(ISTAG)

\ RED = total number of Red aircraft at the beginning

of stage ISTAG.

ABAB(ISTAG) = number of Blue aircraft sent on air base
attack at stage ISTAG.

ABAR(ISTAG) = number of Red aircraft sent on air base
attack at stage ISTAG.

ABD(ISTAG) = number of Blue aircraft sent on air defense
at stage ISTAG.

ADR(ISTAG) = number of Red aircraft sent on air defense
at stage ISTAG. :

CASB(ISTAG) = number of Blue aircraft sent on close air
support at stage ISTAG.
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RDTBA

BDTRA

IRDTBA

IBDTRA

RDKBA

BAK

BAJ

BAKRD

BDKRA

= number of Red aircraft sent on close air

support at stage ISTAG.

the ratio between Red defenders and Blue
attackers.

the ratio between Blue defenders and Red
attackers.

the largest integer less than or equal to
RDTBA.

the largest integer less than or equal to

BDTRA.

probability that a given Red defender will h
kill the Blue attacker to which he was

assigned.

expected number of Blue attackers killed.

number of Blue attackers that jettison
their load.

probability that a given Blue attacker that
survives the Red defender's first round

and jettisons his load will kill a Red
defender.

expected number of the Red defenders killed.

probability that a given Blue defender kills
one Red attacker.

expected number of Red attackers killed.
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RAJ = number of Red attackers that jettison their
load.

E RAKBD probability that a Red attacker that sur-
» vives the Blue defender's first round and
| jettisons his load will kill a Blue defender.

BDK

expected number of Blue defenders killed.

BLGR = expected number of surviving Blue aircraft
after the air-to-air engagement.

RDGR = expected number of surviving Red aircraft
after the air-to-air engagement.

o

BLABA = number of Blue attackers which remain in
their mission and penetrate after air-to-air
engagement.

RDABA = number of Red attackers which remain in
their mission and penetrate after air-to-air
engagement.

FBC = fraction of the Blue aircraft caught on the
ground.

FRC = fraction of the Red aircraft caught on the
ground.

BABA = number of Blue shots which can be used to
kill Red aircraft on the ground.

BABAP = probability that a given shot by a Blue
penetrator will kill one Red aircraft on the
ground.
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RABA

RABAP

BASTRF

RASTBF

IBASTRF

IRSTBF

BGK

RGK

BCAS

RCAS

number of Red shots which can be used to kill
Blue aircraft on the ground.

probability that a given shot by a Red
penetrator will kill one Blue aircraft on the
ground.

the ratio between the number of shots Blue
penetrators have and the number of Red air-
craft caught on the ground.

the ratio between the number of shots Red
penetrators have and the number of Blue air-
craft caught on the ground.

the largest integer less than or equal to
BASTRF.

the largest integer less than or equal to
RASTBF.

expected number of Blue aircraft killed on
the ground.

expected number of Red aircraft killed on
the ground.

the close air support capability of a Blue
aircraft.

the close air support capability of a Red
aircraft.
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Computation of the Binomial Model

Air to Air Destruction. The following equations

are used to calculate the results of the air-to-air engage-

ment.

Red defender to Blue attacker ratio

(ISTAG)
ADR
RDOTRA = == (11-5)
ABAB(ISI‘PG)
Integer of Red defender to Blue attacker ratio
IRDTBA = [RDTBA] {11-6)

Blue attacker killed

BaK = 2BaB ‘TSE) [{ (1-prxma) FOTER (3 _RDKBA [RDTBA-IROTRA]) }](11-7)

Blue attacker jettison

BAJ = min[agaBISTRG) ang (ISTAG) | (11-8)

Red defender killed

ROK = (BAJ-BAK)BAKRD (11-9)

Blue defender to Red attacker ratio

ADB(ISEG)

BDTRA = o
ABap (1STA0)

(11-10)

Integer of Blue defender to Blue attacker ratio
IBDTRA = [BDTRA] (11-11)
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Red attacker killed

Rak = ABAR(TSTAG) (3 { (1-poxra) TBATRR (1 BDKRA [BOTRA-TIEDTRA() } ]

(11-12)

Red attacker jettison

RAT = min[ABARISTAG)  apg (ISTAG) | (11-13)
Blue defender killed

BOK = (RAJ-RAK)BAKRD (11-14)

1

Blue force after air-to-air engagements

BLGR = BLF ‘TS _ pag - mok (11-15)
Red force after air-to—-air engagements

- RAK - RIK (11-16)

Air Base Destruction. The following equations are

used to calculate the number of aircraft destroyed on the

ground for each side.

Blue attackers penetrated 1

(ISTAG) _

BLABA = ABAB BAJ (11-17)

Red attackers penetrated
(ISTAG) _

RAJ (11-18)

RDABA - ABAR




AN

Ratio between Blue penetrator shots and
the Red force caught on ﬂu:géiﬁﬁ

. BLARA x BABA (11-19)

BASTRF = or % RDGR

Integer of BASTRF

IBASTRF = [BASTRF] (11-20)

Blue aircraft killed on the ground

BGK = FECX BIGR [1-{ (1-RaBaP) FSTEF (1 _paRAp [RSTRF-IRSTSF]) }]
(11-21)

Red aircraft killed on the ground

RGK = FRCx RDGR [1-{ (1-BABAP) TBSTRE () _paRAp [BSTRF-IBSTRF])})
(11-22)

Close Air Support.

(ISTAG)

PAYOFF = cass'T™6) o peas - casr(TSTS)  peas (11-23)

The Remaining Forces to (ISTAG-1l). Finally, the

total number of surviving forces for each side is calcu-

lated.
prup ( ISTRG-1) | gy (ISTRG) | pa ~ Bk - BGK (11-24)
RepF (ISTAG-D) | perp (ISTRG) _ pag - ROK - RGK (11-25)
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One Stage Equations for the
Binomial Model

(ISTAG) (ISTAG)

The state variables BLUF and REDF

can again be transformed to the force ratio BI(ISTAG)

F(MSTAG)

and
the injtial red force size RED . As in Chapter VII,
we define s(J,1l), s(J,2), and s(J,3) as the fraction of
Blue force assigned to close air support, air base attack
and air defense, respectively. Similarly, s(k,1l), s(K,2),
and s(K,3) are the fraction of Red force assigned to close
air support, air base attack and air defense, respectively.
We can use equations 11-5 to 11-24 with the force ratio and

initial Red force state variables. Replace the "number”

in equations 11-5 to 11-24 with the force ratio and

REDF(ISTAG). BLUF(ISTAG) will then be the force ratio
BI(ISTAG) when REDF(ISTAG) equals one. In addition,
aBap (ISTAG) _ o1 (ISTAG) . (5 o)
ABAR(ISTAG) = s(K,2)
app(ISTAG) _ g (ISTAG) . o (5 3
ADR(ISTAG) = s(K,3)
casp(ISTAG) _ 5, (ISTAG) . (5 1)
CASR(ISTAG) = s(K,1)

Equation 11-24 then becomes

pr (ISTAG-1) _ p;(ISTAG) _ pag . mpk - BGK (11-26)
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Equation 11-24 becomes

rRr{ISTAG) _ 1 _ pax - RDR - RGX (11-27)

The payoff for this stage when Blue plays his Jth strategy

and Red plays his Kth strategy, assuming that REDF(ISTAG)
is one, is 1
T(BI(ISTAG)’J'K) = p1 (ISTAG) s(J,1) x BCAS
- s8(K,1l) x RCAS (11-28)

By using this notation, equation (7-13) can be used to

express the total payoff Blue wants to maximize.

M= REDF(MSTAGE)[T(BI(MSTAGE)'J'K) + g (MSTAGE)
(7(z (MSTAG=1) . o . po(MSTAGE-1) [
+ RR'2 (p82 Y ,3,x11...1 (11-29)

The dynamic programming approach developed in
Chapter VII can now be used to obtain a numerical solution

of this problem. Time did not permit the computer imple-

mentation of this approach.




XIX. Summary, Conclusions, and Recommendation

The objectives of this study, as listed in
Chapter I, have been accomplished. An algorithm was devel-
oped to solve the multi-stage simultaneous game.

A multi-stage simultaneous game consists of many
two-person zero-sum games {(stages). The payoffs on each
stage are determined by the strategies chosen by the
players and by a state vector describing the capabilities
of each side at the beginning of the stage. A state transi-
tion function is used to determine the state vector of
capabilities at the next stage from the state vector for
the previous stage and the player's stratééies. The main
idea of the solution algorithm is to build at each stage
a matrix whose values are the payoffs obtained by playing
each of the given strategies at this stage and the optimal
strategies for the remaining stages. A dynamic program-
ming approach is used to determine the payoff obtained by
using the optimal strategies for the remaining stages.
Expected game values are calculated at each user-specified
grid point. A cubic spline interpolation is used to find
expected game values at intermediate points.

A tactical air war problem was selected to illus-
trate the usefulness of the algorithm. The missions are

close air support, air base attack and air defense. A
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linear model was developed in which the state vector
(number of Red and Blue aircraft) could change from stage
to stage only when air base attackers successfully pene-
trate the other side's air defense and kill aircraft on
the ground. Air defense can prevent the other side from
attacking the air base but will not result in any force
attrition. Rather than using the force sizes of Blue and
Red as the state variables in the computerized algorithm,
the author proved that a constant (initial Red force size)
and the force ratio (Blue/Red) could be used to completely
describe the state of the game. This reduces the size of
the problem by the square root (e.g., a problem using 100
grid points with two state variables can be solved with
the same accuracy using 10 grid points and a single state
variable).

A "GAME" was developed for training and assisting
the field commander. In the assist mode, the GAME is able
to answer the "what if" questions of the commander. 1In
the training mode, the GAME begins in any given initial
condition, the computer plays optimally as one side and the
commander plays the other side. At each stage the state
variable is updated according to the strategies chosen by

the player and the computer. The player has the option

of asking the GAME to tell him his optimal mixed strategies.

The GAME uses an output of the linear model, which

gives the optimal game value at any stage and at any state.




Then GAME can calculate the optimal strategies for both
sides for any given conditions by solving only one payoff
matrix.

To compare two weapon systems, and to be fair in
the comparison, one should let each system play its optimal
strategies. The multi-stage simultaneous game is an
excellent way to compare two weapon systems when each side
plays its optimal strategy. An example comparing two types
of aircraft is shown in Chapter X. 1In this example, the
preferred system depends on the number of days (stages) in
the campaign and the initial force ratio.

A binomial model that permits attrition to both
sides in the air-to-air engagements is developed in
Chapter XI. This model can also use the force ratio con-
cept.

For an extension of this effort the author recom-
mends the following:

1. Preparing a computer code for the binomial
model and comparing this model to the linear model.

2. Using more missions, such as reconnaissance
and SAM suppression.

3. Using more than one type of aircraft.

4. Examining other potential applications of the
algorithm to various types of games in war and in business.

5. Using the GAME as a method of introducing

multi-stage game theory to students in operations research.
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The GAME can help the students understand the concepts of
game value and mixed strategies.

6. Comparing actual weapon systems using the multi-
stage game algorithm. Determine how much help they may be
in the procurement decision.

In conclusion, this research has provided the
author and, hence, the Egyptian Air Force with a valuable
tool which hopefully will be used to both help train
Egyptian Air Force commanders and help make important

procurement decisions.
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Appendix A :

Interpolation With Cubic Spline Functions

One of the difficulties with conventional poly-
nomial interpolation, particularly if the polynomial is
of high order, is the highly inflected or "wiggly" char-
acter which it is possible for the interpolating polynomial
to assume.

A smoother interpolating function can be produced
using the cubic spline function.

The construction of a cubic spline interpolating
function can be briefly described as follows ( 8:47). We
are given a series of points xi(i=0,l,2,...,n) which are
in general not evenly spaced and the corresponding function
values F(xi). Now consider two arbitrary adjacent points '

x. and x.

i el We wish to fit a cubic to these two points

and use this cubic as the interpolating function between

them. We denote this cubic as

= 2 3 -
F;(x) = aj+a;x+a x"+a,x (xlixixi+1) (A-1)

There are four unknown constraints in (i), and only two
conditions are immediately obvious, namely that

Fi(xi)==f(xi) and Fi(x = f(x We are free to

i+1) iv1)
choose the remaining conditions as we like, to accomplish
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our desired objective of "smoothness." The most effective
approach is to match the first and second derivatives (and
thus the slope and curvature) of Fi(x) to those of the
cubic Fi_l(x) used for interpolation on the adjacent

interval x,_,<x<x If this procedure is carried out

1-7="41°
for all intervals in the region XgSX2IX (with special

3 R
G gt

treatment at the end points) then an approximating function

for the region will have been constructed, consisting of

the set of cubic functions, Fi(x) (i=0,1,...,n-1).

Ly,
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Appendix B

Dynamic Programming

Dynamic programming is a mathematical technique
often useful for making a sequence of interrelated deci-
sions. It requires formulating an appropriate recursive
relationship for each individual problem. However, it
provides a large computational saving over using exhaustive
enumeration to find the best combination of decisions,
especially for large problems.

The basic features which characterize dynamic pro-
gramming problems are presented below (Ref 7:270-271).

1. The problem can be divided into stages, with a
policy decision required at each stage.

2. Each stage has a number of stages associated
with it.

E- | 3. The effect of the policy decision at each stage
i" is to transform the current state into a state associated
y with the next stage.

4. Given the current state, an optimal policy for

the remaining stages is independent of the policy adopted

in previous stages.

3 a 5. The solution procedure begins by finding the

optimal policy for each state of the last stage.
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6. A recursive relationship that identifies the
optimal policy for each state at stage n, given the optimal
policy for each state at stage (n+l), is available.

7. Using this recursive relationship, the solution
procedure moves backward stage by stage--each time finding
the optimal policy for each state of that stage--until it

finds the optimal policy when starting at the initial stage.
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Appendix C

i User's Guide for the Game

This section is designed to acquaint the player
with the rules, procedures, and peculiarities of the game.
| The game was designed to be played interactively and was
implemented in FORTRAN IV on the CDC CYBER 175 INTERCOM
system. The program F3GAME must be edited before the GAME
program (see Figure C-1l) can be run. The program F3GAME
will request the player to set the maximum number of stages
to be played, the aircraft capabilities and the number of

grid points. F3GAME will calculate the optimal game value

ateie NN i

for each grid point and for each stage and will write it
on TAPE3. When the ROW of F3GAME finishes, the player
o should EDIT GAME and run it.

GAME will do the following steps:

1. Rewind tape 3 and read the data from it.

2. The program will print

5 I "YOU CAN PLAY FROM 1 TO # STAGES"

"HOW MANY STAGES DO YOU WANT TO PLAY?"

where # is the maximum number of stages already set on

F3GAME. The player has to choose the number of stages he ‘

wants to play.




. —

PIEETP Y

EDIT F3GAME
SET: 1. # OF STAGES ]
2. A/C CAPABILITY

RUN FTNS5S ]

!

EDIT GAME
RUN FTN5

— O

USER SELECTS

1. TYPE OF GAME

2. # OF STAGES

3. OPTION 1 OR 2

4. BLUE AND RED
FORCE SIZE

5. WHICH SIDE HE
WILL PLAY

g

THE PROGRAM WILL PRINT THE OPTIMAL GAME
VALUE AND ASK THE PLAYER TO TRY TO BEAT IT

1
STAGE=Q

Fig. C-1. Playing Sequence Diagram
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STAGE=STAGE+1

PROGRAM PRINTS ONE
OF THE OPTIMAL

STRATEGIES
THE PLAYER INPUTS THE
STRATEGY HE SELECTS
OPTION NO
1 K 3
PROGRAM PRINTS ONE
OF THE OPTIMAL
STRATEGIES
YES -

j
PROGRAM PRINTS: l
1. NEW BLUE AND RED FORCES }

' 2. THE ONE-STAGE GAME VALUE
| 3. THE ACCUMULATED GAME VALUE

<H$OF STAGE

) PROGRAM PRINTS:
< 1. THE OPTIMAL GAME VALUE
SR 2. THE ACCUMULATED GAME VALUE

‘Ti | <:::b'f YES

Fig. C-l1--Continued
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3. The program will print

"YOU HAVE THE OPTIONS:"

"l1. NOT TO SEE THE OPTIMAL SOLUTION."

“"2. TO SEE ONE OF THE OPTIMAL SOLUTIONS."
The player selects option 1 or option 2 by printing "1"
or "2".

4. The program will ask the player to "PRINT:
BLUE FORCE, RED FORCE" and the player prints the number of
the Blue aircraft and the number of the Red aircraft.

5. The program will print

"IF COMPUTER PLAYS BLUE PRINT 1"
"IF COMPUTER PLAYS RED PRINT 11"
and the player has to select 1 or 1ll.

6. Depending on the force ratio, the number of
stages, and the data given by TAPE2 the program will cal-
culate the optimal game value and the optimal mixed strate-
gies for both sides at this stage. The program then will
draw a random number and decide which strategy it will
play. At the first stage the program will print

"TRY TO BEAT TOTAL GAME VALUE OF #"
where # is the optimal game value calculated before.

7. The program will list the different strategies
and the different capabilities for both sides. The result

is:
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STRATEGY # 1 2 3 4 5 6 7 8 9 10 BUWE RED
Cas 3 2 2 1 1 1 0 ¢ o0 o CASB CASR
ABA 0 1 0o 2 1 0 3 2 1 6 ABAB ABAR
AD 0 0 1 0o 1 2 0 1 2 3 ADB ADR

where CASB, CASR, ABAB, ABAR, ADB, ADR are the capabili-
ties already set on F3GAME. For example:

8. The program will ask the player to print his
strategy. Then if option 2 was chosen, the program will

show the optimal probability of choosing each of the

strategies (mixed strategy).

9. As a result of strategies chosen by both sides,
the program calculates and prints new BLUE FORCE totals
(numbers), new RED FORCE totals, GAME VALUE, and total
GAME VALUE.

10. Steps 6-9 are repeated for each of the stages
assigned.

11. At the end of the game the optimal game value
is printed with the total game value for comparison.

12, 1If the player wants to play another game,
the'program returns to step 2.

The following is the computer code of the GAME

program.
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t
i i 100= PROGRAM SRAME
- 110= FERL TTL10s10s22 ¢Z2s3STRCADD o X400 2¥ 400> s BCI2)sCCL0)
. 120= PVIPIOLC10) «DSOL 122 s RWALITED o WY (302 »BI sHC12s100T
| 130= INTEGER IAsNsM1oM2 IWC40> s TERIMSTAGEsLIM sIs sk 13
:
130= INTEGER IAsMsMIsMSyINCADD» IERSNSTAGESLIM s1sJsK s ISTAGS3S (1
0s 2
4 140= DOUBLE PRECISION NL
‘ 150= REWIND 3
, 150= READ (3s¢2 MITAGE,RABRs EABRAsRADs BRD: RCARSs BCAS»NF
. . 170= DATA S5-352923151519400505130s2915 093929190500 0s130s1929091%
: =y
120= SR/ MIALIO M0/ ML 0/ TR 1279 B 1201 /s 0100l
130= ML=123.D0
? o= I¥=0
- 210= DO 20 IS=1sNITAGE
. 220= READ (2se) Y LIDD s 1I=1yHMF
= 230= DO 25 II=1sNF
Y 240= It=IY+1
1 250=25 vCIYa=YY I
260=210 COMTINUE
27 0= READ (3902 C(A{IIdslI=1sNF)
2230=2000 PRINT e, -“v¥OU CAM PLAY FROM 1t TO “»NSTAGEs” STAGES
290= PRINT ey HOW MAMY STRGES vOU WANT TO PLAY 7 -
300= PRINMT »
210= RERD &sMST
220= PRINT s YOU HAYE THE OPTIOMS :-
230= PEINT s 7 1- NOT TO SEE THE OPTIMAL SOLUTION’
340= PRINT &, 2- TO SEE THE OPTIMAL SOLUTION AFTER YOU PLAY”
2350= FRINT ey WHICH OPTION YOU CHOSE? - !
260= RERD ++NOP ]
370= PRINT &+ “ PRINT : BLUE FDRCE » RED FORCE - '
330= PRINT o
290= FRERD &y BLUFsREDF
400= BI= BLUF/REDF )
410= Tie=0 )
420= PRINT s IF COMPUTER PLAY BLUE PRINT t-
$30=" PRINT s/ IF COMPUTER FLAY RED PRINT 117
44 (0= MN=0
450= PRINT »
450= READ &+ IPL
47 0= DO 1000 ISTAG=NSTs1s-1
430= MM=NN+1
$2y= FRIMT ®s “ZTRGE 27 +MNNM
Suy= o=
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SoOoOo o

980=

30

100

300

830

870

I90=373
1000=

\F ¢¢ BLUF.EQ.0.>.0R, (REDF.EQ.0.>> THEN
NPL=IPL
ELIE
BI=ELUF-MARX 10, ee<(-10)yREDF>
g 200 J=1.10
0 200 K=1s10 .
TT s Ks10= ST )s 1> SBTSBCARS /3, =SS Ks 17 RCRS/ 3D -
IF CISTRG.ER.1> THEN
RS KI=TTCIsKs 12
HI+Ss KD =10
Z=MINCZ RO KD
ELZE
RED=MAXK L0, s ST CJs2) Bl ¢RABAR/3, 33 (K» 3) ¢RRAD-3.D
BELUE=MAX (0, s S5k« 20 oRRBAR-3.-32(Js 3) ¢BI*BRD/3.)
T2=MHA (10, e (=100 {1-FRED)?
T=MAX (10,00 (~100y (BI-BLUE» Y MAX{(10,¢e{~10>, (1-REID>
DO 20 II=1sMF
IFCA<IID.5E.T > THEN
Iv=11+CISTRD-2) NF
PHY=Y CIV=13 4+ Y IV =Y (IY =100 @ (T-K(II-12> s ACTI) =K (1L

30 7O 100
EMDIF
COMTINUE
IV=1ZTHRIGeNF
PAY=Y IV +CY IV =Y (IV=12 10 (T=X<INF>»-.5
TTChHEs2)=TT UK 1) +PRAYST2
RCJskKI=TT (UsKe DD
AJI+2H KD =0
ZEMINCZsRCIs KD D
EMDIF
CONMTINUE
10 350 J=1s10
DO 250 K=1,10
R{JskI =R K) =2
CRLL ZX3LP (A IAYBsCoNsMLa M2y Ve PSDOLy DSOLsRIWs IWs IERD
pg 370 II=1,10

STRCII> =D30L<II> 7Y
STRCII+HI DD =PSOLCII> 7Y
BYRA=Z+1-Y
IF <ISTR5.EX.MST> THEN
565=6YA+REDF ‘
PRINT sy -~ TRY TO BEAT TOTAL GAME VALUE OF ‘+GVASREDF
ENDIF
CALL GHUBS(NLs 1y BRD
3T=0

DO 3735 NPL=IPL, IPL+9
ST=ST+3TR (NPLD

IF (BAR.LE.ST> 60 TO 879
COMTINUE

ENDIF
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10102379
1020=
THEN
1030=
1040=
“sRCRS
1050=
“+ RABA
1060=
s PAD
1070=
1030=
1090=
1100=
1110=
1120=
1130=
1140=
1150=
11560=
1170=
1130=
1130=
1200=
1210=
1220=
1230=
1240=
1250=
1260=
1270=
» eRDF)
1280=
» *RDF)
1290=
1200=
1310=
1220=
1330=
1340=1000
1350=
1360=
1370=
1330=
1370=
1400=
1410=
1420=
143 0=eEDR

I1I=ISTAG/3
IFCCIII#3.EQ. ISTRAG) . OR. (NOP.ER.2> .0OR. <ISTAGE.EQR.NST)D

PRINT & "EZTRATEGY #-4 (I1JoIJ=1,100,- BLUE RED”

PRINT ey “CRS T (3511351 J=15100 "+ BCASs 7

PRINT es “ABR 7 (SSC1Js@2 s 1d=1s100 "7 79 BRBAs ©

PRINT s “HD 73 (SSCIJr 3D IJ=191009 7 “s BADs * ’
ENDIF

IF <NPL.GT.10) THENM

PRIMT &» “RED STRATEGY IS READYsPRINT YOUR STRATEGY-
PRINT o

RERD s J
K=NPL-10
PRINT s “RED PLAY #/sNPL-10
ELSE )
PRINT s "BLUE STRATEGY IS RERDYsPRINT YOUR ITRRTEGY -
PRIMT o
READ sk
J=MPL
PRINT s “BLUE PLRAY #=-sMPL
ENDIF .
PRDF=REDF
IF CMOP.ER.2} .ANMD. (BLUF.NE. D.> . AND. (REDF.MNE. 0.2) THEN
PRINT & BLUE PROB. 7 » CIlsSTRCIIDsII=1s10
PRINT & “RED PROB. 2 (JI-1 D STR{II)» II=11,20
ENDIF
T=(55¢(Js 1) ¢BLUF®BCAS 2, -S3(Ks 1) #REDFeRCAS/3.2
REDF= MAX Q. »REDF-MAX (0, s SS(Js 22 ¢BI¢BREAA3, -8 (K 3) ¢RARD-3,

BLUF= MARX (0, s BLUF-MAX (0, s 33 {K» 2> ¢RABA/ 3. -5 (Js 37 ¢BIeBRD- 2,

PRINT - ©GAME VYALUE = “»Ts 7 RED FORCE = “sREDF

PRIMNT s~ BLUE FORCE = “»BLUF
To=To+T

PRINT ey < TOTAL GAME VALUE = " TG
PRINTe :

CONTINUE

PRIMT &+7 THE OPTIMAL SAME YRLUE MHQ = “40B0
PRINT s END OF THE GAME -
PRINT o
PRINT &y “ IF YOU WANT TO PLAY ANOTHER GRAME:PRINT 1
PRINT o
RERD e» JJ
IF <JJ ER.1> 530 TO 2000
EMD
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100=
110m=
120=
130=
140=

150=
160=
170=

190=
200=
210=

230=
240=
250=
260=
270=

290=
300=24
310=
320=

350=

370=
380=
390=

410=
420=
430=

450=
450=
470=

490=

510=
520=
530=
540m=
550m

'+, NF/29/, BNKILD/ - 000001/, RNKILD/ - 000001/

Appendix D
Computer Code for Linear Algorithm with M=3

(i.e., 10 Strategies)

PROGRAME TAPE
REAL TT(40,10,10),Ss(10,3),STR(80),X(40),Y(40) , B(12),C(10),

:V, PSOL(10),DSOL{12), R¥(173) ,YY(42) ,BI ,A(12,10),T

REAL CU(40, 3) .

INTEGER IA,N,M1,M2,IwW(40),1ER,NSTAGE,L,M ,I,J,K ,ISTAG

DATA NSTAGE/15/,RABA/1/,BABA/1/,RAD/1/,BAD/1/,RCAS/1/,BCAS/1/

WRITE (4,*) NSTAGE,NF
DO 3000 IBLC=1,10
PRINT *, 'IBIC ', IBIC i
IF (IBLC .£Q.1)THEN . 3
ELSEIF(IBLC.LT.5)THEN
BCAS=IBLC/2.+.5 i
ELSEIF (IBLC.LT.8) THEN 1
BABA=(IBLC-2)/2.
BCAS=1
ELSE
BABA=1
BAD=(I3LC~5)/2.
ENDIF
CONTINUE
DATA SS/3,2,2,1,1,1,4%.0,0,1,0,2,1,0,3,2,1,0,0,0.0,1,0,1,2,0,1, 2,
:3M1/10/,M2/0/,3/10/,1A/12/,8/12*1/,C/10%1/
DO 1000 ISTAG=l,NSTAGE . ]
DO 900 I=1,NF I
IF (I.LE.7) THEN » A
BI=-.05+.05*T
ELSEIF (I.LE.9) THEN
BI=-.4+.1%*1 , :
ELSEIF(I.LE.15)THEN . 3
BI==1.75+.25* ' 5
ELSE
BI==5.5+.5*I
ENDIF
X(1)=8BI
2=0.0
DO 800 J=1,10
DO 800 K=1,10
IF (ISTAG.BEQ.1) THEN )
Tr(1,J,K)=SS(J, 1) *BI*DCAS/3.-SS(K, 1) *RCAS/3.
A(J,K)=TT(I,J,K)
aA(J+2,K)=0
Z=AIN(Z,A(J,K))
ELSE
RED=1AX (0., (SS(J, 2)*81/3.-SS(K, 3) *RAD/3. ) *BABA)
BLUE=1AX(0. , (SS(K, 2)/3.-55(J, 3)*BI*BAD/3. ) *RABA)




560m=
570=

590=

610=
620=

910=
920=
930m=
940= 870
950=
960=
970=
930= 900

T2aAX(RNKILD, (1-RED))
T=MAX(BI*BNKILD, ( BI-BLUE) ) MAX(RNKILD, (1~RED))
IF(RED.GE. 1 )THEN
PAY=MAX(O. , (BI-BLUE)*(1STAG-1))
T2=1
ELSEIF( (T.GE.X{}1F~1)).AND.T.LT.X(NF) )THEN
PAY=Y (NF-1)+(Y (NF)=Y (NF=1) ) *(T-X(NF-1) ) / (X(NF)=X (NF-1) )
ELSEIF(T.LT.X(2) )THEN
PAY=Y (1)+(Y(2)~Y(1))*(T-X(1))/(X(2)-X(1))
ELSEIF (T.LT.X(NF-1)) THEN
M=l ’
IC=42 *
CALL ICSCCU(X,Y,NF,CU, IC, IER)
CALL ICSEVU(X,Y,NF,CU,IC,T,PAY,, IER)
ELSE
PAY=Y (NF)+(Y (NF) =Y (NF=1) ) *(T-X(NF) )}/ .5

L

ENDIF
aA(J,K)=TT(I,J, K)+PAY*T2
A(J+2,K)=0
Z=MIN(2,A(J,K))

ENDIF

CQNTINUE

DO 850 J=l1, 10

DO 850 K=1,10

A(J,K)=A(J,K)=2

IF (I.BQ.l) THEN

Z==-1~ISTAG

V=l

PSOL(1)=1
DSOL(1)=1

DO 860 I1=2,10

PSOL(I1)=0

- DSOL(Il)=0
ELSE

CALL ZX3LP(A, IA, B, C, N,M1,M2, V, PSOL, DSOL, RW, IW, IER)

ENDIF

Do 870 1I=1,10

STR(II) =DSOL(I1)/V
STR(II+10) =pPSOL(II)/V -
IF(ISTAG.GT. 2)THEN
ENDIF
YY(I)=Z+1 /V

CONTINUE




990= DO 950 II=l,NF

1000= Y(II)=YY(II)
1010=950 CONTINUE
E | E 1020= IF( (ISTAG. EQ. 1) .AND. (IBLC.EQ.1) )THEN
1030= WRITE (4,*)(X(11),II1=1,NF)
1040= . ENDIF
1050= WRITE (4,*) (Y(II),I11=1,NF)

1060=1000 CONTINUE
1070= 3000 CONTINUE
1080= END
1090=*EOR

\
N

O




100= PROGRAME PRINT

o 110= REAL FATEEN(40,20,15),X(42),Y(42),2(42)
120= _ REWIND 4
130= READ(4,*) NSTAG,NF
140= READ(4,*) (X(II),II=1,NF)
150= DO 100 IBLC=1,10
N 160= DO 100 ISTAG=1,NSTAG
' ’ 170= READ (4,*) (FATEEN(II,ISTAG, IBLC),II=1,NF)
- 180=100 CONTINUE
-~ 190= DO 200 IBLC=1,10
. 200= PRINT *
210= PRINT *
~ 220= PRINT *
- 230= PRINT *,' FR STGl STG2 STG3 STG4 STG5 STG6 STG7 STG
STGY
{3 240= : STGl0°
. 250= DO 200 II=1,NF '
260= PRINT '(1X,F5.2,10F6.2)' , X(II),(FATEEN(II,ISTAG,IBLC) {
~ ISTAG=1 i
- 262= :,10) |
270=200 CONTINUE i
G 280= END
IERCR
. - \
v o=/
{) H
, 0
: . |
! —_— |
| |
1 |
(> e') i
-. ’ _
f‘ t__} -
i,
{

i ot AL
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L
e ! s
]
1 )
4 100= PROGRAM CURVES
- 110= REAL FATEEN(40,20,15),X(42),Y{42), z(42) i
E 120= - REWIND 4 |
130= READ(4,*) NSTAG,NF i
o 140= READ (4,*) NSTAG,NF !
4 150= READ(4,*) (X(I1I1),II=1, NF) ;
: 160= _ DO 100 IBLC=1,10 ;
170= DO 100 ISTAG=1,NSTAG ;
180= READ (4,*) (FATEEN(II,ISTAG,IBLC).II=1,NF) ;
190=100 CONTINUE *
200= X(NF+1)=0. |
210= X{NF+2)=1. ty
220= Y(NF+1)=-10. R
230= Y(NF+2)=10. i
240= CALL PLOTS(0.,0.,9) g
250= CALL PLOT (0.,0.,3)
260= CALL PLOT (1.5,1.0,-3)
270= CALL FACTOR(.7) ;!
280= DO 400 1B=l1,10 ¥
290= CALL AXIS(O.,1l.,'FORCE RATIO' -11,9.,0.,X{NF+1),X(NF+2)) *
300= CALL AXIS(0.,0.,'GAME VALUE' ,10.13.,90.,Y(NF+l).Y(NF+2)) t
310= DO 300 ISTAG=1,NSTAG 1
320= DO 200 I=l1,NF ;
330=200 Y{I)=FATEEN(1, ISTAG, IB) i
340= CALL PLOT (0.,0.,3) )
350= CALL LINE (X,Y,NF,1,126) -—=——
360=300 CONTINUE
370= CALL Ssv+BOL(2.,15.,.5,'Cas =',5)
380= CALL SY1B80L(2.,14.,.5,'ABA =',5)
390= CALL syMBOL{(2.,13.,.5,'AD =',5)
400= PRINT *,IBLC
410= READ *,IIII
420=400 CONTINUE
430= CALL PLOTE(11.,0.,3)
440= END




ARG ot -+ - LI 515 47 i

100=
110=
120=
130=
140=
150=
160=
170=
180=
190=
200=
210=
220=
230=
240=
250=
260=
270=*
280=*
290=*
300=*
310=
320=
330=

350=
370=

390=*
400=*
410=*
420=*
430=

450=
470=

490m=
500=50
510=
520=
530m*
540=60
550=
560=70
570=

Appendix E
Computer Code for OPTSA

PROGRA1 OPTSA
REAL AAA(12,10),AA(12,10),A(12,10),SS(10, 3), PSOL(10),
:DSOL(10),RW(178),C(10),8(12)

INTEGER IV(40)

PRINT*, ' BLUE, RED, BARA, RABA, BAD, RAD, BCAS, RCAS'

. READ *, BLUE, RED, BABA, RABA, BAD, RAD, BCAS, RCAS

PRINT *, 'BR,RR'

READ ,BR,

DATA SS/3,2,2,3*1,5%0,1,0,2,1,0,3,2,1,0,0,0,1,

:0,1,2,0,1, 2, 3/,‘41/10/.‘12/0/,N/10/,IA/12/,B/12*1/,C/10*1/
2272=0

DO 1000 1B=l,10

DO 1000 IR=1,10

~BLU1=BLUE<1AX(0., (SS(IR,2)*RED -SS(IB, 3)*BLUE*BAS)*RABA/3.)
BLU1=4AX(BLU1, BR*BLUE) V '
RED1=RED-1AX(0., (SS(IB,2)*BLUE  ~SS(IR, 3)*BLUE*RAD)®BARA/3.)
RED1=MAX(RED1, RR*RED) _ .

CAS1=SS(IB, 1)*BLUE*BCAS/3.-SS(IR, 1) *RED*RCAS/3.

22=0

DO 100 JB=l1, 10

DO 100 JR=l, 10

BLU2=BLU1-+AX(0., (SS(JR, 2) *RED1/3. -ss(.m 3)*BLUL*BAD/3. ) *RABA)
BLU2=4AX(BLU2, BR*BLU1)

RED2=RED1-1AX(0., (SS(JB, 2) *BLU1/3.-SS(JR, 1 ) *REDL *RAD/3. ) *BABA)
RED2=MAX(RED2, RR*RED1 )

CAS2=CAS1+SS(JB, 1) *BLUL*BCAS/3.-SS(JR, 1 ) *RED1*RCAS/3.
Z=Q
DO 50 KB=l, 10
DO 50 KR=l,10
CAS3=CAS2+SS (KB, 1) *BLU2*BCAS/3. =SS (KR, 1 ) *RED2*RCAS/3.
2=4IN(Z,CAS3)
A(KB, KR)=CaAS3
CONTINUE
DO 70 KB=l,10
DO 60 Kr=l, 10

A(KB, KR)=A(KB, KR )=2
A(l1,KB)=0
A(12,KB)=0
CALL ZX3LP(A, IA,B,C, N,M1,M2,V, PSOL, DSOL, RW, IV, IER)
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230=
590=
600=
610=
620=
630=90
640=100
650=
660=
670=150
630=
690=
700=200
710=1000
720=
730=
740=1100
750=
760=
770=
780=
790=
800=
810=
820=
830=1200
840=

IF(V.PQ.0) THEN
PRINT *, 'V=0'
ELSE
AA(JB,R)=ZHL NV
ENDIF

Z22=MIN(ZZ, AA(JB, JR))

-  CONTINUE
Do 150 Ja=1,10
DO 150 JR=l, 10

AA(JB,JR)=AA(JB,JR)-2Z

CALL 2X3LP(AA, IA, B, C, N,M1,42, V, PSOL, DSOL, RW, IW, IER)
AAA(IB, IR)=Z2Z+1/V

ZZZ2=41IN(2Z2,AAA(1B, IR))

CONTINUE
DO 1100 IB=1,10
DO 1100 IR=1,10

BAA(IB, IR)=AAA(IB, IR)=ZZZ
CALL ZX3LP(AAA, IA, B, C,N,M1,M2, V, PSOL, DSOL, RW, IW, IER)
GV-uZZ+l/V
PRINT '(2X,10F7.5)°, (PSOL(J)/V,J=1,10)
PRINT °(2X,1F7.5)', (DSOL(J)/V,.J=1,10)
PRINT *
PRINT *, '"GAME VALUE = ',GV
DO 1200 I=1,10
PRINT °‘(2X,10F7.2)°', (AAA(I, J)+222Z, J=1, 10)
CONTINUE

END
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